Unity中Shader光照探针的支持

文章目录

  • 前言
  • 一、光照探针用在哪怎么用
    • 1、光照探针的应用场景
    • 2、我们按照以上条件,在Unity中搭建一个相同的环境
    • 3、创建光照探针
  • 二、在我们自己的Shader中,实现支持光照探针
    • 1、使用常用的 cginc
    • 2、在 v2f 中,准备如下变量
    • 3、在顶点着色器中,进行顶点和法线世界空间的转化后,使用如下代码
    • 4、在片元着色器中,使用如下代码计算
    • 最终代码


前言

主要写全局照明中,光照探针的支持


一、光照探针用在哪怎么用

1、光照探针的应用场景

在一个只有 Backed 模式灯光的场景中,有一个非静态的物体
即该物体在烘焙时,不会被烘焙,不会受到烘焙灯光的影响。

但是,我们此时不能修改灯光的模式 也不能修改该物体为静态物体
却需要给该动态物体受到烘焙灯光的影响
此时就需要使用光照探针了

2、我们按照以上条件,在Unity中搭建一个相同的环境

Unity中Shader光照探针的支持_第1张图片
我们会发现,小球在烘焙后是不受烘焙光的影响的
Unity中Shader光照探针的支持_第2张图片

3、创建光照探针

可以直接在一个空物体添加 Light Probe Group,也按下图直接添加光照探针
Unity中Shader光照探针的支持_第3张图片

添加后,把光照探针的范围设置到,要让动态小球接收到烘焙光影响的范围
在光照探针中,黄色小点点在空间内越密集越多,动态物体接收到的烘焙光越精致细腻
Unity中Shader光照探针的支持_第4张图片

然后,我们烘焙后就可以看见小球能接收烘焙光的效果了
Unity中Shader光照探针的支持_第5张图片


二、在我们自己的Shader中,实现支持光照探针

我们继续使用之前的文章作为测试

  • Unity中Shader再议ATTENUATION

我们会发现我们的 Shader在使用后是全黑的
因为我们关闭了主平行光,两个点光源又是Backed类
Unity中Shader光照探针的支持_第6张图片

1、使用常用的 cginc

#include “AutoLight.cginc”
#include “Lighting.cginc”

2、在 v2f 中,准备如下变量

float4 worldPos : TEXCOORD;
half3 worldNormal : NORMAL;
half3 sh : TEXCOORD2;

3、在顶点着色器中,进行顶点和法线世界空间的转化后,使用如下代码

//实现 球谐 或者 环境色 和 顶点照明 的计算
//SH/ambient and vertex lights
#ifndef LIGHTMAP_ON //当此对象没有开启静态烘焙时
#if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXEL
     o.sh = 0;
     //近似模拟非重要级别的点光在逐顶点上的光照效果
     #ifdef VERTEXLIGHT_ON
			o.sh += Shade4PointLights(
            unity_4LightPosX0,unity_4LightPosY0,unity_4LightPosZ0,
            unity_LightColor[0].rgb,unity_LightColor[1].rgb,unity_LightColor[2].rgb,unity_LightColor[3].rgb,
            unity_4LightAtten0,o.worldPos,o.worldNormal);
    #endif
    o.sh = ShadeSHPerVertex(o.worldNormal,o.sh);
#endif
#endif

4、在片元着色器中,使用如下代码计算

#if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXEL
	giInput.ambient = i.sh;
#else
	giInput.ambient = 0.0;
#endif

然后,我们就可以看见我们的Shader也有光照探针的效果了

Unity中Shader光照探针的支持_第7张图片

同时,也有了逐顶点光照的效果

最终代码

//在这里里面使用 自定义的 cginc 来实现全局GI
//GI数据的准备
//烘培分支的判断
//GI的直接光实现
//GI的间接光实现
//再议ATTENUATION
//光照探针的支持
Shader "MyShader/P1_8_8"
{
    SubShader
    {
        Tags { "RenderType"="Opaque" }
        Pass
        {
            Tags{"LightMode"="ForwardBase"}
            
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            #pragma multi_compile_fwdbase
            
            #include "UnityCG.cginc"
            #include "AutoLight.cginc"
            #include "Lighting.cginc"
            
            #include "CGIncludes/MyGlobalIllumination.cginc"
            
            struct appdata
            {
                float4 vertex : POSITION;
                //定义第二套 UV ,appdata 对应的固定语义为 TEXCOORD1
                #if defined(LIGHTMAP_ON) || defined(DYNAMICLIGHTMAP_ON)
                float4 texcoord1 : TEXCOORD1;
                #endif
                half3 normal : NORMAL;
            };

            struct v2f
            {
                float4 pos : SV_POSITION;
                
                float4 worldPos : TEXCOORD;
                //定义第二套UV
                #if defined(LIGHTMAP_ON) || defined(DYNAMICLIGHTMAP_ON)
                float4 lightmapUV : TEXCOORD1;
                #endif
                half3 worldNormal : NORMAL;

                half3 sh : TEXCOORD2;
                //1、使用 阴影采样 和 光照衰减的方案的 第一步
                //同时定义灯光衰减以及实时阴影采样所需的插值器
                UNITY_LIGHTING_COORDS(3,4)
                //UNITY_SHADOW_COORDS(2)
            };
            
            v2f vert (appdata v)
            {
                v2f o;
                o.pos = UnityObjectToClipPos(v.vertex);
                o.worldPos = mul(unity_ObjectToWorld,v.vertex);
                o.worldNormal = UnityObjectToWorldNormal(v.normal);
                
                //对第二套UV进行纹理采样
                #if defined(LIGHTMAP_ON) || defined(DYNAMICLIGHTMAP_ON)
                    o.lightmapUV.xy = v.texcoord1 * unity_LightmapST.xy + unity_LightmapST.zw;
                #endif

                //实现 球谐 或者 环境色 和 顶点照明 的计算
                //SH/ambient and vertex lights
                #ifndef LIGHTMAP_ON //当此对象没有开启静态烘焙时
                #if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXEL
                    o.sh = 0;
                    //近似模拟非重要级别的点光在逐顶点上的光照效果
                    #ifdef VERTEXLIGHT_ON
                        o.sh += Shade4PointLights(
                        unity_4LightPosX0,unity_4LightPosY0,unity_4LightPosZ0,
                        unity_LightColor[0].rgb,unity_LightColor[1].rgb,unity_LightColor[2].rgb,unity_LightColor[3].rgb,
                        unity_4LightAtten0,o.worldPos,o.worldNormal);
                    #endif
                    o.sh = ShadeSHPerVertex(o.worldNormal,o.sh);
                #endif
                #endif
                
                
                //2、使用 阴影采样 和 光照衰减的方案的 第二步
                UNITY_TRANSFER_LIGHTING(o,v.texcoord1.xy)
                //TRANSFER_SHADOW(o)
                return o;
            }

            fixed4 frag (v2f i) : SV_Target
            {
                //1、准备 SurfaceOutput 的数据
                SurfaceOutput o;
                //目前先初始化为0,使用Unity自带的方法,把结构体中的内容初始化为0
                UNITY_INITIALIZE_OUTPUT(SurfaceOutput,o)
                o.Albedo = 1;
                o.Normal = i.worldNormal;
                
                //1、代表灯光的衰减效果
                //2、实时阴影的采样
                UNITY_LIGHT_ATTENUATION(atten,i,i.worldPos);

                
                //2、准备 UnityGIInput 的数据
                UnityGIInput giInput;
                //初始化
                UNITY_INITIALIZE_OUTPUT(UnityGIInput,giInput);
                //修改用到的数据
                giInput.light.color = _LightColor0;
                giInput.light.dir = _WorldSpaceLightPos0;
                giInput.worldPos = i.worldPos;
                giInput.worldViewDir = normalize(_WorldSpaceCameraPos - i.worldPos);
                giInput.atten = atten;
                giInput.ambient = 0;

                #if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXEL
                    giInput.ambient = i.sh;
                #else
                    giInput.ambient = 0.0;
                #endif

                
                #if defined(DYNAMICLIGHTMAP_ON) || defined(LIGHTMAP_ON)
                giInput.lightmapUV = i.lightmapUV;
                #endif
                
                //3、准备 UnityGI 的数据
                UnityGI gi;
                //直接光照数据(主平行光)
                gi.light.color = _LightColor0;
                gi.light.dir = _WorldSpaceLightPos0;
                //间接光照数据(目前先给0)
                gi.indirect.diffuse = 0;
                gi.indirect.specular = 0;
                
                //GI的间接光照的计算 
                LightingLambert_GI1(o,giInput,gi);
                //查看Unity源码可知,计算间接光照最主要的函数就是
                //inline UnityGI UnityGI_Base1(UnityGIInput data, half occlusion, half3 normalWorld)
                //所以我们直接给 gi 赋值,可以不使用 LightingLambert_GI1
                gi = UnityGI_Base1(giInput,1,o.Normal);

                //GI的直接光照的计算
                //我们在得到GI的数据后,对其进行Lambert光照模型计算,即可得到结果
                fixed4 c =  LightingLambert1(o,gi);

                return c;
                //return fixed4(gi.indirect.diffuse,1);
                //return 1;
            }
            ENDCG
        }

        //阴影的投射
        Pass
        {
            //1、设置 "LightMode" = "ShadowCaster"
            Tags{"LightMode" = "ShadowCaster"}
            CGPROGRAM
            
            #pragma vertex vert
            #pragma fragment frag
            //需要添加一个 Unity变体
            #pragma multi_compile_shadowcaster
            
            #include "UnityCG.cginc"

            //声明消融使用的变量
            float _Clip;
            sampler2D _DissolveTex;
            float4 _DissolveTex_ST;
            
            //2、appdata中声明float4 vertex:POSITION;和half3 normal:NORMAL;这是生成阴影所需要的语义.
            //注意:在appdata部分,我们几乎不要去修改名字 和 对应的类型。
            //因为,在Unity中封装好的很多方法都是使用这些标准的名字
            struct appdata
            {
                float4 vertex:POSITION;
                half3 normal:NORMAL;
                float4 uv:TEXCOORD;
            };
            //3、v2f中添加V2F_SHADOW_CASTER;用于声明需要传送到片断的数据.
            struct v2f
            {
                float4 uv : TEXCOORD;
                V2F_SHADOW_CASTER;
            };
            //4、在顶点着色器中添加TRANSFER_SHADOW_CASTER_NORMALOFFSET(o),主要是计算阴影的偏移以解决不正确的Shadow Acne和Peter Panning现象.
            v2f vert(appdata v)
            {
                v2f o;
                o.uv.zw = TRANSFORM_TEX(v.uv,_DissolveTex);
                TRANSFER_SHADOW_CASTER_NORMALOFFSET(o);
                return o;
            }
            //5、在片断着色器中添加SHADOW_CASTER_FRAGMENT(i)
            
            fixed4 frag(v2f i) : SV_Target
            {
                //外部获取的 纹理 ,使用前都需要采样
                fixed4 dissolveTex = tex2D(_DissolveTex,i.uv.zw);
                
                //片段的取舍
                clip(dissolveTex.r -  _Clip);
                
                SHADOW_CASTER_FRAGMENT(i);
            }
            ENDCG
        }
    }
}

你可能感兴趣的:(Unity,unity,游戏引擎)