用于图像处理的高斯滤波器 (LoG) 拉普拉斯

用于图像处理的高斯滤波器 (LoG) 拉普拉斯_第1张图片

一、说明

        欢迎来到拉普拉斯和高斯滤波器的拉普拉斯的故事。LoG是先进行高斯处理,继而进行拉普拉斯算子的图像处理算法。用拉普拉斯具有过零功能,实现边缘岭脊提取。

二、LoG算法简述

        在这篇博客中,让我们看看拉普拉斯滤波器和高斯滤波器的拉普拉斯滤波器以及 Python 中的实现。拉普拉斯滤波器的故事始于图论中的拉普拉斯矩阵,这是在矩阵中表示图的最简单方法。图像的拉普拉斯高亮了强度快速变化的区域。任何具有明显不连续性的特征都将由拉普拉斯算子增强。拉普拉斯滤波器属于导数滤波器类别。它是一种二阶滤波器,用于图像处理,用于边缘检测和特征提取。当我们使用一阶导数滤波器时,我们必须应用单独的滤波器来检测垂直和水平边缘,然后将两者结合起来。但是拉普拉斯滤波器可以检测所有边缘,而不管方向如何。

        在数学上,拉普拉斯滤波器定义为:

用于图像处理的高斯滤波器 (LoG) 拉普拉斯_第2张图片

        拉普拉斯滤波器函数

        存在 2 种类型的拉普拉斯滤波器。

  1. 拉普拉斯阳性
  2. 负拉普拉斯

        正拉普拉斯算子使用掩码,中心元素为负值,角元素为 0。此滤镜可识别图像的外边缘。下面给出了一个过滤器掩码示例。

用于图像处理的高斯滤波器 (LoG) 拉普拉斯_第3张图片 阳性拉普拉斯掩模

        负拉普拉斯算子用于查找图像的内边缘。它使用标准蒙版,中心元素为正元素,角元素为 0,所有其他元素为 -1。下面给出一个示例。

用于图像处理的高斯滤波器 (LoG) 拉普拉斯_第4张图片 负拉普拉斯掩码

        在这两种情况下,筛选器中的值总和应为 0。标准面罩有不同的变体可供选择。你可以试穿它。

三、过零功能

        过零点是数学函数的符号在函数图中发生变化的点。在图像处理中,使用拉普拉斯滤波器的边缘检测是通过将图中导致零的点标记为潜在的边缘点来进行的。此方法适用于在两个方向上查找边缘的图像,但当在图像中发现噪点时效果不佳。因此,我们通常在拉普拉斯滤波器之前应用 Guassian 滤波器对图像进行平滑处理。它通常被称为瓜西拉普拉斯 (LoG) 滤波器。我们可以将 Guassian 和 Laplacian 运算组合在一起,组合滤波器的数学表示如下:

用于图像处理的高斯滤波器 (LoG) 拉普拉斯_第5张图片

LoG滤波器功能

四、代码块

        方法 1

        下面提到了实现 LoG 过滤器的 OpenCV 内置函数方法。

#OPENCV implementation

import cv2
import matplotlib.pyplot as plt
image = cv2.imread(r"E:\eye.png", cv2.IMREAD_COLOR)
image = cv2.GaussianBlur(image, (3, 3), 0)
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
filtered_image = cv2.Laplacian(image_gray, cv2.CV_16S, ksize=3)
# Plot the original and filtered images
plt.figure(figsize=(10, 5))
plt.subplot(121)
plt.imshow(image, cmap='gray')
plt.title('Original Image')

plt.subplot(122)
plt.imshow(filtered_image, cmap='gray')
plt.title('LoG Filtered Image')

plt.show()

        程序输出:

用于图像处理的高斯滤波器 (LoG) 拉普拉斯_第6张图片

        方法 2

        在 openCV 中实现 LoG 过滤器的 Python 函数如下所示。

import cv2
import matplotlib.pyplot as plt
import numpy as np
def LoG_filter_opencv(image, sigma, size=None):
    # Generate LoG kernel
    if size is None:
        size = int(6 * sigma + 1) if sigma >= 1 else 7

    if size % 2 == 0:
        size += 1

    x, y = np.meshgrid(np.arange(-size//2+1, size//2+1), np.arange(-size//2+1, size//2+1))
    kernel = -(1/(np.pi * sigma**4)) * (1 - ((x**2 + y**2) / (2 * sigma**2))) * np.exp(-(x**2 + y**2) / (2 * sigma**2))
    kernel = kernel / np.sum(np.abs(kernel))

    # Perform convolution using OpenCV filter2D
    result = cv2.filter2D(image, -1, kernel)

    return result

# Example usage:
image = cv2.imread(r"E:\eye.png", cv2.IMREAD_GRAYSCALE)  # Replace 'path_to_your_image.png' with your image path
sigma = 2.0
filtered_image = LoG_filter_opencv(image, sigma)
filtered_image = cv2.convertScaleAbs(filtered_image)
plt.imshow(filtered_image, cmap="gray")

        程序的输出:

用于图像处理的高斯滤波器 (LoG) 拉普拉斯_第7张图片

        方法 3

        下面给出了使用 scipy 包的 LoG 过滤器的 Python 函数实现。

import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage import convolve
from scipy import misc

def LoG_filter(image, sigma, size=None):
    # Generate LoG kernel
    if size is None:
        size = int(6 * sigma + 1) if sigma >= 1 else 7

    if size % 2 == 0:
        size += 1

    x, y = np.meshgrid(np.arange(-size//2+1, size//2+1), np.arange(-size//2+1, size//2+1))
    kernel = -(1/(np.pi * sigma**4)) * (1 - ((x**2 + y**2) / (2 * sigma**2))) * np.exp(-(x**2 + y**2) / (2 * sigma**2))
    kernel = kernel / np.sum(np.abs(kernel))

    # Perform convolution
    result = convolve(image, kernel)

    return result

# Example usage:
image = cv2.imread(r"E:\eye.png", cv2.IMREAD_GRAYSCALE)  # Replace 'path_to_your_image.png' with your image path
sigma = 2.0
filtered_image = LoG_filter(image, sigma)

# Plot the original and filtered images
plt.figure(figsize=(10, 5))
plt.subplot(121)
plt.imshow(image, cmap='gray')
plt.title('Original Image')

plt.subplot(122)
plt.imshow(filtered_image, cmap='gray')
plt.title('LoG Filtered Image')

plt.show()

        程序输出:

用于图像处理的高斯滤波器 (LoG) 拉普拉斯_第8张图片

        希望您喜欢阅读。这是关于图像处理中常用过滤器的另一篇文章的链接 用于图像处理的不同过滤器 | by 拉吉·利尼 |中。

你可能感兴趣的:(数字图形和图像处理,人工智能,图像处理,人工智能)