20、MapReduce 工作流介绍

Hadoop系列文章目录

1、hadoop3.1.4简单介绍及部署、简单验证
2、HDFS操作 - shell客户端
3、HDFS的使用(读写、上传、下载、遍历、查找文件、整个目录拷贝、只拷贝文件、列出文件夹下文件、删除文件及目录、获取文件及文件夹属性等)-java
4、HDFS-java操作类HDFSUtil及junit测试(HDFS的常见操作以及HA环境的配置)
5、HDFS API的RESTful风格–WebHDFS
6、HDFS的HttpFS-代理服务
7、大数据中常见的文件存储格式以及hadoop中支持的压缩算法
8、HDFS内存存储策略支持和“冷热温”存储
9、hadoop高可用HA集群部署及三种方式验证
10、HDFS小文件解决方案–Archive
11、hadoop环境下的Sequence File的读写与合并
12、HDFS Trash垃圾桶回收介绍与示例
13、HDFS Snapshot快照
14、HDFS 透明加密KMS
15、MapReduce介绍及wordcount
16、MapReduce的基本用法示例-自定义序列化、排序、分区、分组和topN
17、MapReduce的分区Partition介绍
18、MapReduce的计数器与通过MapReduce读取/写入数据库示例
19、Join操作map side join 和 reduce side join
20、MapReduce 工作流介绍
21、MapReduce读写SequenceFile、MapFile、ORCFile和ParquetFile文件
22、MapReduce使用Gzip压缩、Snappy压缩和Lzo压缩算法写文件和读取相应的文件
23、hadoop集群中yarn运行mapreduce的内存、CPU分配调度计算与优化


文章目录

  • Hadoop系列文章目录
  • 一、MapReduce 工作流介绍
  • 二、使用示例
    • 1、实现
    • 2、验证


本文介绍MapReduce 工作流。
本文前提:hadoop环境可用。

一、MapReduce 工作流介绍

多个MR作业,先后依次执行来计算得出最终结果。这类作业类似于DAG的任务,各个作业之间有依赖关系,比如说,这一个作业的输入,依赖上一个作业的输出等等。
一般实际的业务场景中,可能使用定时调度工具进行调度,但本示例仅仅说明mapreduce自身也可以做到。
20、MapReduce 工作流介绍_第1张图片

  • JobControl类:工作流job控制器,一次可以提交、管理多个job。JobControl类实现了线程Runnable接口。需要实例化一个线程来让它启动。
  • ControlledJob类:可以将普通作业包装成受控作业。并且支持设置依赖关系。Hadoop会根据依赖的关系,先后执行job任务,每个任务的运行都是独立的。

二、使用示例

MapReduce的join操作
将上述的Reduce side join 的例子连续起来运行,即第一步未排序输出,第二步针对上一步的输出进行排序。

1、实现

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.jobcontrol.ControlledJob;
import org.apache.hadoop.mapreduce.lib.jobcontrol.JobControl;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.hadoop.mr.join.reducerside.ReduceSideSortDriver;
import org.hadoop.mr.join.reducerside.ReduceSideSortMapper;
import org.hadoop.mr.join.reducerside.ReduceSideSortReducer;
import org.hadoop.mr.join.reducerside.ReducerSideJoinDriver;
import org.hadoop.mr.join.reducerside.ReducerSideJoinMapper;
import org.hadoop.mr.join.reducerside.ReducerSideJoinReducer;

public class MRFlowDriver {
	static String in = "D:/workspace/bigdata-component/hadoop/test/in/join";
	static String tempOut = "D:/workspace/bigdata-component/hadoop/test/out/reduceside/unsortjoin";
	static String out = "D:/workspace/bigdata-component/hadoop/test/out/reduceside/joinsort";

	public static void main(String[] args) throws Exception {
		Configuration conf = new Configuration();

		FileSystem fs = FileSystem.get(conf);
		if (fs.exists(new Path(out))) {
			fs.delete(new Path(out), true);
		}

		// 第一个作业的配置
		Job unSortjob = getJob(conf, "Reduce Side Join DependingJob Testing ------ unSortjob", ReducerSideJoinDriver.class,
				ReducerSideJoinMapper.class, Text.class, Text.class, ReducerSideJoinReducer.class, Text.class,
				NullWritable.class, 1, in, tempOut);
	
		// 将普通作业包装成受控作业
		ControlledJob unSortControlledJob = new ControlledJob(conf);
		unSortControlledJob.setJob(unSortjob);

		// 第二个作业的配置
		Job sortedjob = getJob(conf, "Reduce Side Join DependingJob Testing ------ sortedjob", ReduceSideSortDriver.class,
				ReduceSideSortMapper.class, Text.class, Text.class, ReduceSideSortReducer.class, Text.class,
				NullWritable.class, 1, tempOut, out);

		ControlledJob sortedControlledJob = new ControlledJob(conf);
		sortedControlledJob.setJob(sortedjob);

		// 设置job的依赖关系
		sortedControlledJob.addDependingJob(unSortControlledJob);

		// 主控制容器
		JobControl jobControl = new JobControl("jobControl");
		// 添加到总的JobControl里,进行控制
		jobControl.addJob(unSortControlledJob);
		jobControl.addJob(sortedControlledJob);

		// 在线程启动
		Thread t = new Thread(jobControl);
		t.start();
		while (true) {
			if (jobControl.allFinished()) {
				System.out.println("jobControl" + jobControl.getSuccessfulJobList());
				jobControl.stop();
				break;
			}

		}

	}

	/**
	 * 
	 * @param conf
	 * @param jobName
	 * @param cls
	 * @param clsMapper
	 * @param clsMapOutKey
	 * @param clsMapOutValue
	 * @param clsReducer
	 * @param clsReducerOutKey
	 * @param clsReducerOutValue
	 * @param tasks
	 * @return
	 * @throws Exception
	 */
	static Job getJob(Configuration conf, String jobName, Class<?> cls, Class<? extends Mapper> clsMapper,
			Class<?> clsMapOutKey, Class<?> clsMapOutValue, Class<? extends Reducer> clsReducer,
			Class<?> clsReducerOutKey, Class<?> clsReducerOutValue, int tasks, String in, String out) throws Exception {
		Job job = Job.getInstance(conf, jobName);
		// 设置作业驱动类
		job.setJarByClass(cls);
		// 设置mapper相关信息
		job.setMapperClass(clsMapper);
		job.setMapOutputKeyClass(clsMapOutKey);
		job.setMapOutputValueClass(clsMapOutValue);

		// 设置reducer相关信息
		job.setReducerClass(clsReducer);
		job.setOutputKeyClass(clsReducerOutKey);
		job.setOutputValueClass(clsReducerOutValue);

		job.setNumReduceTasks(tasks);

		// 设置输入的文件的路径
		FileInputFormat.setInputPaths(job, new Path(in));
		FileSystem fs = FileSystem.get(conf);
		if (fs.exists(new Path(out))) {
			fs.delete(new Path(out), true);
		}
		FileOutputFormat.setOutputPath(job, new Path(out));

		return job;
	}

}

2、验证

运行日志

jobControl[job name:	Reduce Side Join DependingJob Testing ------ unSortjob
job id:	jobControl0
job state:	SUCCESS
job mapred id:	job_local1023947416_0001
job message:	just initialized
job has no depending job:	
, job name:	Reduce Side Join DependingJob Testing ------ sortedjob
job id:	jobControl1
job state:	SUCCESS
job mapred id:	job_local1967863010_0002
job message:	just initialized
job has 1 dependeng jobs:
	 depending job 0:	Reduce Side Join DependingJob Testing ------ unSortjob
]

实际的功能与本示例中对应的链接示例结果一致,不再赘述。
至此,MapReduce的工作流示例介绍结束。

你可能感兴趣的:(#,hadoop专栏,mapreduce,hadoop,大数据,bigdata,分布式)