工作原理是计算机索引程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置,当用户查询时,检索程序就根据事先建立的索引进行查找,并将查找的结果反馈给用户的检索方式。这个过程类似于通过字典中的检索字表查字的过程
Elasticsearch 的目录结构如下 :
目录 | 含义 |
---|---|
bin | 可执行脚本目录 |
config | 配置目录 |
jdk | 内置 JDK 目录 |
lib | 类库 |
logs | 日志目录 |
modules | 模块目录 |
plugins | 插件目录 |
解压后,进入 bin 文件目录,点击 elasticsearch.bat 文件启动 ES 服务
注意: 9300 端口为 Elasticsearch 集群间组件的通信端口, 9200 端口为浏览器访问的 http协议 RESTful 端口
查看ES是否启动成功:http://localhost:9200/
ES请求遵守REST原则,返回的格式为JSON
索引是为了优化查询而产生的!
正排索引/正向索引(传统)
id | content |
---|---|
1001 | my name is zhang san |
1002 | my name is li si |
倒排索引
keyword | id |
---|---|
name | 1001, 1002 |
zhang | 1001 |
elasticsearch是一个面向文档的数据库,一条数据在这里就是一个文档
由于ES索引的特点,Type的概念逐渐被弱化
创建索引:
对比关系型数据库,创建索引就等同于创建数据库
在 Postman 中,向 ES 服务器发 PUT 请求 : http://127.0.0.1:9200/shopping
查询索引:GET请求
①查询所有索引:http://127.0.0.1:9200/_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open shopping J0WlEhh4R7aDrfIc3AkwWQ 1 1 0 0 208b 208b
②查询单个索引:http://127.0.0.1:9200/shopping
表头 | 含义 |
---|---|
health | 当前服务器健康状态: green(集群完整) yellow(单点正常、集群不完整) red(单点不正常) |
status | 索引打开、关闭状态 |
index | 索引名 |
uuid | 索引统一编号 |
pri | 主分片数量 |
rep | 副本数量 |
docs.count | 可用文档数量 |
docs.deleted | 文档删除状态(逻辑删除) |
store.size | 主分片和副分片整体占空间大小 |
pri.store.size | 主分片占空间大小 |
删除索引:DELETE请求 http://127.0.0.1:9200/shopping
ES中的文档对应于关系数据库中的表数据
创建文档:
POST 请求 : http://127.0.0.1:9200/shopping/_doc
,请求体JSON内容为:
{
"title":"小米手机",
"category":"小米",
"images":"http://www.gulixueyuan.com/xm.jpg",
"price":3999.00
}
由于没有指定数据唯一性标识(ID),默认情况下, ES 服务器会随机生成一个
注意:此处发送请求的方式必须为 POST,不能是 PUT,否则会发生错误
如果想要自定义唯一性标识,需要在创建时指定: http://127.0.0.1:9200/shopping/_doc/1001
1001就为数据的主键,即唯一标识
注意:如果增加数据时明确数据主键,那么请求方式也可以为 PUT
主键查询:GET 请求 : http://127.0.0.1:9200/shopping/_doc/1001
查看索引下所有数据: GET 请求 : http://127.0.0.1:9200/shopping/_search
全局修改:
和新增文档一样,输入相同的 URL 地址请求,如果请求体变化,会将原有的数据内容覆盖
POST 请求 : http://127.0.0.1:9200/shopping/_doc/1001
局部修改:
POST 请求 : http://127.0.0.1:9200/shopping/_update/1001
请求体JSON内容为:
{
"doc": {
"title":"小米手机",
"category":"小米"
}
}
删除:
删除一个文档不会立即从磁盘上移除,它只是被标记成已删除(逻辑删除)
DELETE 请求 : http://127.0.0.1:9200/shopping/_doc/1001
条件查询:
①URL带参查询
查找category为小米的文档,GET请求 : http://127.0.0.1:9200/shopping/_search?q=category:小米
②请求体带参查询
接下带JSON请求体,还是查找category为小米的文档,GET请求 : http://127.0.0.1:9200/shopping/_search
,附带JSON体如下:
{
"query":{
"match":{
"category":"小米"
}
}
}
③带请求体方式的查找所有内容
{
"query":{
"match_all":{}
}
}
④查询指定字段
{
"query":{
"match_all":{}
},
"_source":["title"]
}
分页查询:
计算公式:from =(页码-1)*每页数据条数
{
"query":{
"match_all":{}
},
"from":0,
"size":2
}
查询排序:
如果你想通过排序查出价格最高的手机,GET请求 : http://127.0.0.1:9200/shopping/_search
,附带JSON体如下:
{
"query":{
"match_all":{}
},
"sort":{
"price":{
"order":"desc"
}
}
}
多条件查询:
假设想找出小米牌子,价格为3999元的。(must相当于数据库的&&)
GET请求 : http://127.0.0.1:9200/shopping/_search
,附带JSON体如下:
{
"query":{
"bool":{
"must":[
{
"match":{
"category":"小米"
}
},
{
"match":{
"price":3999
}
}
]
}
}
}
假设想找出小米和华为的牌子 (should相当于数据库的||)
{
"query":{
"bool":{
"should":[
{
"match":{
"category":"小米"
}
},
{
"match":{
"category":"华为"
}
}
]
}
}
}
范围查询:
假设想找出小米和华为的牌子,价格大于3000元的手机。
GET请求 : http://127.0.0.1:9200/shopping/_search
,附带JSON体如下:
{
"query":{
"bool":{
"should":[
{
"match":{
"category":"小米"
}
},
{
"match":{
"category":"华为"
}
}
],
"filter":{
"range":{
"price":{
"gt":3000
}
}
}
}
}
}
全文检索:
功能像搜索引擎那样,如品牌输入“小华”,返回结果带回品牌有“小米”和华为的。
GET请求 : http://127.0.0.1:9200/shopping/_search
,附带JSON体如下:
{
"query":{
"match":{
"category" : "小华"
}
}
}
完全匹配:
{
"query":{
"match_phrase":{
"category":"红米"
}
}
}
高亮查询:
以category字段高亮显示为例:
{
"query":{
"match_phrase":{
"category":"红米"
}
},
"highlight":{
"fields":{
"category":{}
}
}
}
聚合查询:
聚合允许使用者对 es 文档进行统计分析,类似与关系型数据库中的 group by,当然还有很多其他的聚合,例如取最大值max、平均值avg等等。
接下来按price字段进行分组:
GET请求 : http://127.0.0.1:9200/shopping/_search
,附带JSON体如下:
{
"aggs":{ //聚合操作
"price_group":{ //名称,随意起
"terms":{ //分组
"field":"price" //分组字段
}
}
},
"size":0//表示不用显示原始数据
}
若想对所有手机价格求平均值
{
"aggs":{ //聚合操作
"price_avg":{ //名称,随意起
"avg":{ //分组
"field":"price" //分组字段
}
}
},
"size":0//表示不用显示原始数据
}
映射关系:
有了索引库,等于有了数据库中的 database
接下来就需要建索引库(index)中的映射了,类似于数据库(database)中的表结构(table)
创建数据库表需要设置字段名称,类型,长度,约束等;索引库也一样,需要知道这个类型下有哪些字段,每个字段有哪些约束信息,这就叫做映射(mapping)
①先创建一个索引:
# PUT http://127.0.0.1:9200/user
②创建映射
# PUT http://127.0.0.1:9200/user/_mapping
{
"properties":{
"name":{
"type":"text",//可分词
"index":true //可索引
},
"sex":{
"type":"keyword",//不可分词,完全匹配
"index":true
},
"tel":{
"type":"keyword",
"index":false//不可索引
}
}
}
③查询映射
#GET http://127.0.0.1:9200/user/_mapping
环境准备:
添加依赖
<dependencies>
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>7.8.0</version>
</dependency>
<!-- elasticsearch 的客户端 -->
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>7.8.0</version>
</dependency>
<!-- elasticsearch 依赖 2.x 的 log4j -->
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-api</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.9.9</version>
</dependency>
<!-- junit 单元测试 -->
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
</dependencies>
1.索引创建:
public class Es_Index_Create {
public static void main(String[] args) throws IOException {
//创建ES客户端
RestHighLevelClient client = new RestHighLevelClient(
RestClient.builder(new HttpHost("localhost", 9200, "http"))
);
// System.out.println(client);
//创建索引
CreateIndexRequest request = new CreateIndexRequest("student");
CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT);
//响应状态
boolean acknowledged = response.isAcknowledged();
System.out.println("索引操作:" + acknowledged);
//关闭ES客户端
client.close();
}
}
2.查询索引:
public class Es_Index_Search {
public static void main(String[] args) throws IOException {
...
//查询索引
GetIndexRequest request = new GetIndexRequest("student");
GetIndexResponse getIndexResponse = client.indices().get(request, RequestOptions.DEFAULT);
System.out.println(getIndexResponse.getSettings());
//关闭ES客户端
client.close();
}
}
3.删除索引:
public class Es_Index_Delete {
public static void main(String[] args) throws IOException {
...
//删除索引
DeleteIndexRequest request = new DeleteIndexRequest("student");
AcknowledgedResponse delete = client.indices().delete(request, RequestOptions.DEFAULT);
System.out.println("删除结果:" + delete.isAcknowledged());
//关闭ES客户端
client.close();
}
}
1.创建文档:
public class Es_Doc_Insert {
public static void main(String[] args) throws IOException {
//创建ES客户端
RestHighLevelClient client = new RestHighLevelClient(
RestClient.builder(new HttpHost("localhost", 9200, "http"))
);
//插入数据
IndexRequest indexRequest = new IndexRequest();
indexRequest.index("user").id("1001");
User user = new User("zhangsan", "男", 23);
//向ES插入数据,必须将数据转化为json格式
ObjectMapper mapper = new ObjectMapper();
String userJson = mapper.writeValueAsString(user);
indexRequest.source(userJson, XContentType.JSON);
IndexResponse response = client.index(indexRequest, RequestOptions.DEFAULT);
System.out.println(response.getResult());
//关闭ES客户端
client.close();
}
}
2.修改文档:
public class Es_Doc_Update {
public static void main(String[] args) throws IOException {
...
//更新数据
UpdateRequest updateRequest = new UpdateRequest();
updateRequest.index("user").id("1001");
updateRequest.doc(XContentType.JSON,"sex","女");
UpdateResponse updateResponse = client.update(updateRequest, RequestOptions.DEFAULT);
System.out.println(updateResponse.getResult());
//关闭ES客户端
client.close();
}
}
3.查询文档:
public class Es_Doc_Get {
public static void main(String[] args) throws IOException {
...
//查询数据
GetRequest getRequest = new GetRequest();
getRequest.index("user").id("1001");
GetResponse response = client.get(getRequest, RequestOptions.DEFAULT);
System.out.println(response.getSourceAsString());
//关闭ES客户端
client.close();
}
}
4.删除文档:
DeleteRequest request = new DeleteRequest().index("user").id("1001");
//客户端发送请求,获取响应对象
DeleteResponse response = client.delete(request, RequestOptions.DEFAULT);
5.批量新增:
//批量插入数据
BulkRequest bulkRequest = new BulkRequest();
bulkRequest.add(new IndexRequest().index("user").id("1002").source(XContentType.JSON,"name","lisi"));
bulkRequest.add(new IndexRequest().index("user").id("1003").source(XContentType.JSON,"name","wanger"));
bulkRequest.add(new IndexRequest().index("user").id("1004").source(XContentType.JSON,"name","lihua"));
BulkResponse response = client.bulk(bulkRequest, RequestOptions.DEFAULT);
System.out.println("花费时间:"+response.getTook());
6.批量删除:
//创建批量删除请求对象
BulkRequest request = new BulkRequest();
request.add(new DeleteRequest().index("user").id("1001"));
request.add(new DeleteRequest().index("user").id("1002"));
request.add(new DeleteRequest().index("user").id("1003"));
//客户端发送请求,获取响应对象
BulkResponse responses = client.bulk(request, RequestOptions.DEFAULT);
//打印结果信息
System.out.println("took:" + responses.getTook());
System.out.println("items:" + responses.getItems());
7.全量查询:查询所有数据
//查询索引中全部的数据
SearchRequest searchRequest = new SearchRequest();
searchRequest.indices("user");
searchRequest.source(new SearchSourceBuilder().query(QueryBuilders.matchAllQuery()));
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits hits = response.getHits();
System.out.println(hits.getTotalHits());
8.条件查询:
//条件查询:termQuery
SearchRequest searchRequest = new SearchRequest();
searchRequest.indices("user");
searchRequest.source(new SearchSourceBuilder().query(QueryBuilders.termQuery("age",23)));
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits hits = response.getHits();
System.out.println(hits.getTotalHits());
for (SearchHit hit:hits){
System.out.println(hit.getSourceAsString());
}
9.分页查询:
SearchRequest searchRequest = new SearchRequest();
searchRequest.indices("user");
SearchSourceBuilder builder = new SearchSourceBuilder().query(QueryBuilders.matchAllQuery());
builder.from(0);
builder.size(2);
searchRequest.source(builder);
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits hits = response.getHits();
System.out.println(hits.getTotalHits());
for (SearchHit hit:hits){
System.out.println(hit.getSourceAsString());
}
10.查询排序:
//查询排序
SearchRequest searchRequest = new SearchRequest();
searchRequest.indices("user");
SearchSourceBuilder builder = new SearchSourceBuilder().query(QueryBuilders.matchAllQuery());
builder.sort("age", SortOrder.ASC);
searchRequest.source(builder);
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits hits = response.getHits();
11.过滤字段:
//过滤字段
SearchRequest searchRequest = new SearchRequest();
searchRequest.indices("user");
SearchSourceBuilder builder = new SearchSourceBuilder().query(QueryBuilders.matchAllQuery());
String[] include = {"name"};
String[] exclude = {};
builder.fetchSource(include, exclude);
searchRequest.source(builder);
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits hits = response.getHits();
System.out.println(hits.getTotalHits());
12.组合查询:
//组合查询
SearchRequest searchRequest = new SearchRequest();
searchRequest.indices("user");
SearchSourceBuilder builder = new SearchSourceBuilder();
BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
// boolQueryBuilder.must(QueryBuilders.matchQuery("age",23));
boolQueryBuilder.mustNot(QueryBuilders.matchQuery("sex","男"));
boolQueryBuilder.should(QueryBuilders.matchQuery("age",23));
boolQueryBuilder.should(QueryBuilders.matchQuery("age",24));
builder.query(boolQueryBuilder);
searchRequest.source(builder);
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits hits = response.getHits();
System.out.println(hits.getTotalHits());
13.范围查询:
//范围查询
SearchRequest searchRequest = new SearchRequest();
searchRequest.indices("user");
SearchSourceBuilder builder = new SearchSourceBuilder();
RangeQueryBuilder rangeQuery = QueryBuilders.rangeQuery("age");
rangeQuery.gte(20);
rangeQuery.lte(40);
builder.query(rangeQuery);
searchRequest.source(builder);
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits hits = response.getHits();
System.out.println(hits.getTotalHits());
14.模糊查询:
SearchRequest searchRequest = new SearchRequest();
searchRequest.indices("user");
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.query(QueryBuilders.fuzzyQuery("name","lisi").fuzziness(Fuzziness.AUTO));
searchRequest.source(builder);
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits hits = response.getHits();
System.out.println(hits.getTotalHits());
for (SearchHit hit:hits){
System.out.println(hit.getSourceAsString());
}
15.高亮查询:
// 高亮查询
SearchRequest request = new SearchRequest().indices("user");
//2.创建查询请求体构建器
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
//构建查询方式:高亮查询
TermsQueryBuilder termsQueryBuilder =
QueryBuilders.termsQuery("name","zhangsan");
//设置查询方式
sourceBuilder.query(termsQueryBuilder);
//构建高亮字段
HighlightBuilder highlightBuilder = new HighlightBuilder();
highlightBuilder.preTags("");//设置标签前缀
highlightBuilder.postTags("");//设置标签后缀
highlightBuilder.field("name");//设置高亮字段
//设置高亮构建对象
sourceBuilder.highlighter(highlightBuilder);
//设置请求体
request.source(sourceBuilder);
//3.客户端发送请求,获取响应对象
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//4.打印响应结果
SearchHits hits = response.getHits();
16.聚合查询:
SearchSourceBuilder builder = new SearchSourceBuilder();
MaxAggregationBuilder maxAggregationBuilder = AggregationBuilders.max("maxAge").field("age");
builder.aggregation(maxAggregationBuilder);
searchRequest.source(builder);
17.分组查询:
SearchRequest request = new SearchRequest().indices("user");
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
sourceBuilder.aggregation(AggregationBuilders.terms("age_groupby").field("age"));
//设置请求体
request.source(sourceBuilder);
//3.客户端发送请求,获取响应对象
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//4.打印响应结果
SearchHits hits = response.getHits();