Spark DataFrame中join与SQL很像,都有inner join, left join, right join, full join;
那么join方法如何实现不同的join类型呢?
看其原型
def join(right : DataFrame, usingColumns : Seq[String], joinType : String) : DataFrame
def join(right : DataFrame, joinExprs : Column, joinType : String) : DataFrame
可见,可以通过传入String类型的joinType来实现。
joinType可以是”inner”、“left”、“right”、“full”分别对应inner join, left join, right join, full join,默认值是”inner”,代表内连接
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person")).show()
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "inner").show()
结果如下:
id_person | name | address | id_order | orderNum | id_person |
---|---|---|---|---|---|
1 | 张三 | 深圳 | 3 | 533 | 1 |
1 | 张三 | 深圳 | 4 | 444 | 1 |
2 | 李四 | 成都 | 1 | 325 | 2 |
3 | 王五 | 厦门 | 2 | 34 | 3 |
“left”,”left_outer”或者”leftouter”代表左连接
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "left").show()
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "left_outer").show()
结果如下:
id_person | name | address | id_order | orderNum | id_person |
---|---|---|---|---|---|
1 | 张三 | 深圳 | 3 | 533 | 1 |
1 | 张三 | 深圳 | 4 | 444 | 1 |
2 | 李四 | 成都 | 1 | 325 | 2 |
3 | 王五 | 厦门 | 2 | 34 | 3 |
4 | 朱六 | 杭州 | null | null | null |
“right”,”right_outer”及“rightouter”代表右连接
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "right").show()
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "right_outer").show()
结果如下:
id_person | name | address | id_order | orderNum | id_person |
---|---|---|---|---|---|
2 | 李四 | 成都 | 1 | 325 | 2 |
3 | 王五 | 厦门 | 2 | 34 | 3 |
1 | 张三 | 深圳 | 3 | 533 | 1 |
1 | 张三 | 深圳 | 4 | 444 | 1 |
null | null | null | 5 | 777 | 11 |
“full”,”outer”,”full_outer”,”fullouter”代表全连接
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "full").show()
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "full_outer").show()
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "outer").show()
结果如下:
id_person | name | address | id_order | orderNum | id_person |
---|---|---|---|---|---|
1 | 张三 | 深圳 | 3 | 533 | 1 |
1 | 张三 | 深圳 | 4 | 444 | 1 |
2 | 李四 | 成都 | 1 | 325 | 2 |
3 | 王五 | 厦门 | 2 | 34 | 3 |
4 | 朱六 | 杭州 | null | null | null |
null | null | null | 5 | 777 | 11 |
Scala测试源码:
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.sql.SQLContext
case class Persons(id_person: Int, name: String, address: String)
case class Orders(id_order: Int, orderNum: Int, id_person: Int)
object DataFrameTest {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local[2]").setAppName("DataFrameTest")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val personDataFrame = sqlContext.createDataFrame(List(Persons(1, "张三", "深圳"), Persons(2, "李四", "成都"), Persons(3, "王五", "厦门"), Persons(4, "朱六", "杭州")))
val orderDataFrame = sqlContext.createDataFrame(List(Orders(1, 325, 2), Orders(2, 34, 3), Orders(3, 533, 1), Orders(4, 444, 1), Orders(5, 777, 11)))
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person")).show()
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "inner").show()
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "left").show()
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "left_outer").show()
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "right").show()
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "right_outer").show()
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "full").show()
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "full_outer").show()
personDataFrame.join(orderDataFrame, personDataFrame("id_person") === orderDataFrame("id_person"), "outer").show()
}
}
如何实现的呢?查看spark源码中sql部分可知其是将String类型转换为了JoinType
JoinType的伴生对象中对String类型的typ先转换成小写,然后去掉typ中的下划线 _
,之后用模式匹配来决定用的是哪种join类型,另外,从源码中可知,除了内连接、左连接、右连接、全连接外,还有个LeftSemi连接,这种连接没用过,不太清楚
Spark中JoinType源码:
object JoinType {
def apply(typ: String): JoinType = typ.toLowerCase.replace("_", "") match {
case "inner" => Inner
case "outer" | "full" | "fullouter" => FullOuter
case "leftouter" | "left" => LeftOuter
case "rightouter" | "right" => RightOuter
case "leftsemi" => LeftSemi
case _ =>
val supported = Seq(
"inner",
"outer", "full", "fullouter",
"leftouter", "left",
"rightouter", "right",
"leftsemi")
throw new IllegalArgumentException(s"Unsupported join type '$typ'. " +
"Supported join types include: " + supported.mkString("'", "', '", "'") + ".")
}
}
sealed abstract class JoinType
case object Inner extends JoinType
case object LeftOuter extends JoinType
case object RightOuter extends JoinType
case object FullOuter extends JoinType
case object LeftSemi extends JoinType
hkl曰:其实测试了之后发现这个他的join的操作和我们对于mysql表的各种join操作是几乎一样的。搞清楚你的业务需求就知道该如何来使用连接的类型了。对于新手来说就是表连接的相等条件就是用 === 不要搞错了。有新内容我会及时更新的。
转自:http://blog.csdn.net/anjingwunai/article/details/51934921