- 通过 Azure OpenAI 服务使用 GPT-35-Turbo and GPT-4(win版)
小霖同学onism
Multi-agentazuregpt-3flask
官方文档AzureOpenAI是微软提供的一项云服务,旨在将OpenAI的先进人工智能模型与Azure的基础设施和服务相结合。通过AzureOpenAI,开发者和企业可以访问OpenAI的各种模型,如GPT-3、Codex和DALL-E等,并将其集成到自己的应用程序和服务中。调用方式API调用:用户可以通过HTTP请求来调用AzureOpenAI提供的RESTAPI。请求中需要包含API密钥进行身
- 详述Python环境下配置AI大模型Qwen-72B的步骤
Play_Sai
#Python开发pythonAI大模型人工智能
随着人工智能技术的发展,大规模预训练模型如Qwen-72B等逐渐成为研究和应用的重点。本篇博客旨在提供一份详细的指南,帮助Python开发者们在自己的环境中顺利配置并使用Qwen-72B大模型。请注意:由于Qwen-72B这一模型目前并未公开存在,所以以下内容仅为假设性描述,实际上你需要替换为你想要配置的真实存在的大模型,例如GPT-3、BERT等。一、环境准备1.安装必要的库首先确保你已经安装了
- 洞悉LangChain:LangChain工程化设计,从API到智能Agent的全面探索
汀、人工智能
AIAgentLLM技术汇总langchain人工智能自然语言处理大模型AgentLangGraphAIAgent
洞悉LangChain:LangChain工程化设计,从API到智能Agent的全面探索1.LangChain简介LangChain是2022年10月底,由哈佛大学的HarrisonChase发起的基于开源大语言模型的AI工程开发框架。当然也可以问一下AI:通义千问2.5:LangChain是一个开源框架,专注于简化开发者利用大型语言模型(LLM)创建应用程序的过程。这些大型语言模型,如GPT-3
- 100天精通Python丨黑科技篇 —— 21、大语言模型_100天精通python快速入门到黑科技
前端收割机
程序员python科技语言模型
ChatGPT是OpenAI推出的一种基于GPT-3/4的聊天机器人。chatgpt的颠覆性影响主要体现在提高语言交流的便捷性、个性化服务、自动化客服和教育娱乐等方面,这些应用可以为用户带来更多的便利和乐趣,同时也为企业提供了更多的服务和商机。本文收录于《100天精通Python专栏-快速入门到黑科技》,是由CSDN内容合伙人丨全站排名Top4的硬核博主不吃西红柿倾力打造,分基础知识篇和黑科技应用
- 一口气了解大模型相关通识,基础笔记!
AI小白熊
笔记数据库架构面试职场和发展transformerai
一、大模型生态有哪些语言类大模型:GPT-3、GPT-3.5、GPT-4系列模型。并且,OpenAl在训练GPT-3的同时训练了参数不同、复杂度各不相同的A、B、C、D四项大模型(基座模型),用于不同场景的应用;其中,A、B、C、D模型的全称分别是ada、babbage、curie(居里)和davinci(达芬奇),四个模型并不是GPT-3的微调模型,而是独立训练的四个模型;四个模型的参数规模和复
- Chat Gpt我们自己造出的“外星人”
蔡昱
最近都在谈论ChatGpt,正好我在书店看书时,再次读到《人类简史》,看到他的序言是这么写的:这段文字看起来,语句通顺、逻辑合理对吧,这就是GPT-3写的,他和ChatGpt有共同的底层技术,只是运用侧重不一样,ChatGpt更专注于聊天和对话。对于这篇序言作者尤瓦尔是这么说的:这是一个强大的人工智能系统按指令模仿我的写作风格写的。GPT-3接到指令,要它为《人类简史》出版10周年写一篇新序,于是
- 【LLM大模型】24年最新大语言模型新书!这本LLM大模型黑书你一定要学(附PDF)
会AIGC的小孩
语言模型pdf人工智能大数据大模型自然语言处理ui
今天给大家推荐一本丹尼斯·罗斯曼(DenisRothman)编写的关于大语言模型(LLM)权威教程基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理>!Google工程总监AntonioGulli作序,这含金量不用多说,在这里给大家强烈推荐一下这本黑书,下面直接开始介绍!这本书犹如一道闪电,照亮了我在AI领域前行的道路。它不仅仅是一本书,更是一把钥匙,为我打开了通
- DALL-E 2: 重新定义图像生成的人工智能
-龙川-
推荐介绍学习笔记dall·e2
前言随着人工智能技术的迅猛发展,图像生成已经成为AI研究领域中的一个重要方向。OpenAI推出的DALL-E2无疑是其中的佼佼者。这一强大的生成模型能够根据文本描述生成高质量的图像,为创意工作者和各行各业的专业人士提供了全新的工具。本文将深入探讨DALL-E2的原理、应用、技术优势及其对未来图像生成领域的影响。一、DALL-E2简介DALL-E2是OpenAI开发的一种基于GPT-3架构的生成模型
- GPT 模型简史:从 GPT-1 到 GPT-4
三月七꧁ ꧂
大模型开发gpt人工智能自然语言处理语言模型transformergpt-3prompt
文章目录GPT-1GPT-2GPT-3从GPT-3到InstructGPTGPT-3.5、Codex和ChatGPTGPT-4GPT-1 2018年年中,就在Transformer架构诞生⼀年后,OpenAI发表了⼀篇题为“ImprovingLanguageUnderstandingbyGenerativePre-Training”的论文,作者是AlecRadford等⼈。这篇论文介绍了GP
- GPT-3:一个新应用生态系统诞生了
派派AI学院
「某个应用程序用2个基于GPT-3的机器人相互辩论。这是YouTube用户BakzT.Future剖析的14个GPT-3应用程序之一。」GPT-3以其庞大的规模成为OpenAI令人印象深刻的自然语言处理(NLP)模型。Transformerencoder-decoder模型之间由超过1,750亿个被称为参数的单词之间的加权值连接,将其15亿个参数的前身GPT-2打的落花流水。您只要输入要执行的任务
- 【小白教学】一文教你如何使用文心一言、ChatGPT指令
斯克AI
文心一言chatgptprompt
近年来,随着人工智能技术的迅速发展,大语言模型如GPT-3、BERT等逐渐成为AI研究和应用的热点。而在中国,百度推出的文心一言(ERNIEBot)也逐渐崭露头角,成为众多开发者关注的焦点。但是想要用好人工智能就要学会如何运用指令,接下来教大家一些简单的方法。万能公式实际上,如果你能更精确地提问,那么GPT的回答质量就会相应提高。下面我将分享一个提问的通用模式:角色+目标+需求+额外信息。角色:例
- 大模型是如何炼成的:揭秘深度学习训练的秘密与优化技巧
AI大模型_学习君
深度学习人工智能大模型训练ai大模型LLM大语言模型大模型应用
引言:近年来,人工智能领域的突破性进展与大模型的崛起密不可分。从GPT-3到BERT,这些大型预训练模型在各种任务上展现出了惊人的能力。那么,这些大模型是如何训练出来的呢?本文将通过具体案例,带你走进深度学习训练的世界,一探究竟,并分享一些大模型训练过程中的优化技巧。一、数据收集与预处理数据收集:大模型的训练需要海量的数据。例如,GPT-3的训练数据包含了数十亿网页文本,而BERT则使用了维基百科
- 全能型模型与专精型模型
青空之蓝qk
人工智能python
一、全能型模型全能型模型旨在处理广泛的任务,具备多种能力。例如,GPT-3和GPT-4等大型语言模型可以进行文本生成、翻译、对话和问答等多种功能。这类模型的优势在于:1.灵活性:全能型模型可以在多种应用场景中使用,适应性强。例如,企业可以使用同一个模型处理客户服务、内容创作和市场分析等任务,降低了开发和维护成本。2.知识整合:全能型模型通常经过大量数据训练,能够整合不同领域的知识,提供更全面的解决
- 一起来聊聊大模型的token
做个天秤座的程序猿
token大模型tokengpt
文章目录前言一、token是什么二、常用分词方法三、GPT-3的分词方式1.代码示例2.`Ġworld`和`world`的区别1)分词中的空格前缀2)后续计算中的区别3.为什么使用子词分词总结前言学习大模型的朋友肯定听说过大模型接口按token,自己编写代码的时候也经常看到token这个词,那它究竟是什么呢,我们一起来探究一下一、token是什么在大模型中,“token”通常指代文本中的最小单位,
- 大型语言模型RAG(检索增强生成):检索技术的应用与挑战
in_tsz
语言模型人工智能自然语言处理
摘要检索增强生成(RAG)系统通过结合传统的语言模型生成能力和结构化数据检索,为复杂的问题提供精确的答案。本文深入探讨了RAG系统中检索技术的工作原理、实现方式以及面临的挑战,并对未来的发展方向提出了展望。随着大型预训练语言模型(LLMs)如GPT-3和BERT的出现,自然语言处理(NLP)领域取得了显著进展。然而,这些模型在处理知识密集型任务时仍存在局限性,特别是在需要最新或特定领域知识的情况下
- 借助ChatGPT提高编程效率指南
AI臻蚌
chatgptchatgpt人工智能
PS:ChatGPT无限次数,无需魔法,登录即可使用,网页打开下面一、借助ChatGPT提高编程效率指南随着计算机技术的飞速发展,编程已经成为了现代社会中一个非常重要的技能。对于许多人来说,编程不仅是一项工作技能,而且是一种生活方式。然而,即使是最有经验的程序员,也会在编写代码时遇到困难和挑战。幸运的是,我们可以利用现代技术来提高编程效率,并使我们的工作更加轻松。ChatGPT是一种基于GPT-3
- 微软宣布 Power Fx 开源!
老率的IT私房菜
PowerFx是一种基于类似表格公式的低代码通用编程语言,它是一种强类型、声明性和函数式语言,可根据需要提供命令式逻辑和状态管理,Excel用户使用PowerFx将会特别熟悉。今年5月,微软通过与OpenAI的GPT-3模型的集成进一步提升了语言能力,PowerFx可以使用自然语言代替复杂的公式进行计算。此前,微软只开放了PowerFx的文档,并计划在今年年底前对实际源代码进行开源。今日,微软将P
- Bert基础(一)--transformer概览
Andy_shenzl
DeepLearing&pytorchNLPberttransformer人工智能
1、简介当下最先进的深度学习架构之一,Transformer被广泛应用于自然语言处理领域。它不单替代了以前流行的循环神经网络(recurrentneuralnetwork,RNN)和长短期记忆(longshort-termmemory,LSTM)网络,并且以它为基础衍生出了诸如BERT、GPT-3、T5等知名架构。本文将带领你深入了解Transformer的实现细节及工作原理。本章首先介绍Tran
- Prompt Engineering 提示工程教程详情
沐知全栈开发
prompt人工智能
PromptEngineering(提示工程)是一种在自然语言处理(NLP)领域越来越受欢迎的技术。它涉及到创建和优化提示(prompts),以便从大型语言模型(如GPT-3)中获得高质量和目标导向的输出。在本教程中,我们将详细介绍提示工程的基本概念、实践方法和一些高级技巧。一、提示工程基础什么是提示工程?提示工程是一种艺术和科学,它涉及到设计智能提示,以激发大型语言模型的潜力,生成符合特定需求和
- Prompt Engineering 高级提示工程技巧
沐知全栈开发
prompt人工智能机器学习
PromptEngineering(提示工程)是一种在自然语言处理(NLP)领域越来越受欢迎的技术。它涉及到创建和优化提示(prompts),以便从大型语言模型(如GPT-3)中获得高质量和目标导向的输出。在本教程中,我们将详细介绍一些高级提示工程技巧,帮助您更有效地利用大型语言模型。一、参数调整许多大型语言模型允许用户调整生成输出的参数,如温度、顶部概率和最大长度。这些参数可以影响输出的创造性和
- 【翻译】GPT-3架构,简述于“餐巾纸”上
liyane
AI人工智能gpt-3
这是一篇技术派文章,尤其是其中的绘制于“餐巾纸”上的手绘图,从数学角度对于大语言模型的架构给你一些新的启发。原文链接:https://dugas.ch/artificial_curiosity/GPT_architecture.html作者:DanielDugas翻译/编辑:liyane使用LLMChatAPI翻译;为了方便对照,把英文原文也对应在每段中文翻译之下。现在马上跟随作者开始一次开心的旅
- 【AIGC】大语言模型
AIGCExplore
AIGCAIGC语言模型人工智能
大型语言模型,也叫大语言模型、大模型(LargeLanguageModel,LLM;LargeLanguageModels,LLMs)什么是大型语言模型大型语言模型(LLM)是指具有数千亿(甚至更多)参数的语言模型,它们是通过在大规模文本数据上进行训练而得到的。这些模型基于Transformer架构,其中包含多头注意力层,堆叠在一个非常深的神经网络中。常见的LLM包括GPT-3、PaLM、Gala
- NLP_GPT到ChatGPT
you_are_my_sunshine*
NLP大模型自然语言处理gptchatgpt
文章目录介绍小结介绍从初代GPT到GPT-3,主要经历了下面几个关键时刻。GPT:2018年,OpenAl发布了这款基于Transformer架构的预训练语言模型,其参数数量为1.17亿(117M)。GPT运用单向自回归方法生成文本,先预训练大量无标签文本,再在特定任务上进行微调。GPT在多种NLP任务上取得了显著进步。GPT-2:2019年,OpenAI推出了GPT的升级版,拥有更多参数[15亿
- 如何使用Hugging Face:对Transformer和pipelines的介绍
第欧根尼的酒桶
transformer深度学习人工智能
一、transformer介绍众所周知,transformer模型(如GPT-3、LLaMa和ChatGPT)已经彻底改变了人工智能领域。它们不仅被用于自然语言处理,还被应用于计算机视觉、语音处理和其他任务中。HuggingFace是一个以变换器为核心的Python深度学习库。因此,在我们深入了解其工作原理之前,我们将探讨什么是transformer,以及为什么它们能够支持如此强大的模型。1.递归
- 大模型基础知识
lichunericli
LLM人工智能语言模型
主流的开源模型体系GPT(GenerativePre-trainedTransformer)系列:由OpenAI发布的一系列基于Transformer架构的语言模型,包括GPT、GPT-2、GPT-3等。GPT模型通过在大规模无标签文本上进行预训练,然后在特定任务上进行微调,具有很强的生成能力和语言理解能力。BERT(BidirectionalEncoderRepresentationsfromT
- GPT3是否是强人工智能?
枯木嫩芽
今天和大家分享一下AI方向自然语言处理(NLP)领域内一个新的语言模型:GPT-3。GPT-3是继bert之后一次轰动NLP领域的语言模型,GPT-3是著名人工智能科研公司OpenAI开发的文本生成(textgeneration)人工智能,相关论文5月份已经发表,当时就以天文数字级别的1,750亿参数量引发轰动。训练该模型的数据达到了45TB,训练该语言模型的成本高达1200万美元的高价(喵喵前面
- ChatGPT的背后原理:大模型、注意力机制、强化学习
Python学研大本营
chatgpt
介绍ChatGPT机器人背后的原理,带你了解ChatGPT如何工作。微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩本文主要介绍为ChatGPT提供动力的机器学习模型,将从大型语言模型的介绍开始,深入探讨使GPT-3得到训练的革命性的自注意机制,然后深入到从人类反馈强化学习,这是使ChatGPT出类拔萃的新技术。大型语言模型ChatGPT是一类机器学习自然语言处理进行推断的模型,称
- LLM的参数微调、训练、推理;LLM应用框架;LLM分布式训练
lichunericli
LLM人工智能语言模型自然语言处理
大模型基础主流的开源大模型有哪些?GPT-3:由OpenAI开发,GPT-3是一个巨大的自回归语言模型,拥有1750亿个参数。它可以生成文本、回答问题、翻译文本等。GPT-Neo:由EleutherAI开发,GPT-Neo是一个开源的、基于GPT架构的语言模型,拥有数十亿到百亿级的参数。GPT-J:也是由EleutherAI开发的,GPT-J是一个拥有60亿参数的开源语言模型。PaLM(Pathw
- 用35行代码开发一个自己的AI对话机器人
也鱼实验室
之前也写了好几篇关于ChatGPT的文章了,领略到了与深入优化的GPT-3(GenerativePre-trainedTransformer)对话过程中的各种惊喜。但是因为ChatGPT的爆发性流量和访问限制问题,平时使用的时候多多少少会不太方便。其实OpenAI本身就提供了大量的API接口,可以让用户免费使用开发出自己的WebAPP,包括我们今天要说的对话机器人,关于API的一些应用,我在之前一
- 如何利用ChatGPT填写表格数据
摆烂大大王
chatgptchatgpt
随着人工智能技术的迅速发展,ChatGPT等智能对话系统已经成为了我们生活中的得力助手。其中,利用ChatGPT填写表格数据是一项十分实用的功能,它可以帮助我们节省时间,提高工作效率。下面,我们将介绍如何利用ChatGPT来填写表格数据。了解ChatGPT的能力在开始之前,我们需要明白ChatGPT的能力。ChatGPT是一个基于GPT-3或GPT-4的对话式人工智能模型,它能够理解和生成自然语言
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1