Doris 支持导入 JSON 格式的数据。本文档主要说明在进行 JSON 格式数据导入时的注意事项。
目前只有以下导入方式支持 JSON 格式的数据导入:
暂不支持其他方式的 JSON 格式数据导入。
当前仅支持以下两种 JSON 格式:
以 Array 表示的多行数据
以 Array 为根节点的 JSON 格式。Array 中的每个元素表示要导入的一行数据,通常是一个 Object。示例如下:
[
{ "id": 123, "city" : "beijing"},
{ "id": 456, "city" : "shanghai"},
...
]
[
{ "id": 123, "city" : { "name" : "beijing", "region" : "haidian"}},
{ "id": 456, "city" : { "name" : "beijing", "region" : "chaoyang"}},
...
]
这种方式通常用于 Stream Load 导入方式,以便在一批导入数据中表示多行数据。
这种方式必须配合设置 strip_outer_array=true
使用。Doris 在解析时会将数组展开,然后依次解析其中的每一个 Object 作为一行数据。
以 Object 表示的单行数据
以 Object 为根节点的 JSON 格式。整个 Object 即表示要导入的一行数据。示例如下:
{ "id": 123, "city" : "beijing"}
{ "id": 123, "city" : { "name" : "beijing", "region" : "haidian" }}
这种方式通常用于 Routine Load 导入方式,如表示 Kafka 中的一条消息,即一行数据。
以固定分隔符分隔的多行 Object 数据
Object表示的一行数据即表示要导入的一行数据,示例如下:
{ "id": 123, "city" : "beijing"}
{ "id": 456, "city" : "shanghai"}
...
这种方式通常用于 Stream Load 导入方式,以便在一批导入数据中表示多行数据。
这种方式必须配合设置 read_json_by_line=true
使用,特殊分隔符还需要指定line_delimiter
参数,默认\n
。Doris 在解析时会按照分隔符分隔,然后解析其中的每一行 Object 作为一行数据。
一些数据格式,如 JSON,无法进行拆分处理,必须读取全部数据到内存后才能开始解析,因此,这个值用于限制此类格式数据单次导入最大数据量。
默认值为100,单位MB,可参考BE配置项修改这个参数
在 STREAM LOAD中,可以添加 fuzzy_parse
参数来加速 JSON 数据的导入效率。
这个参数通常用于导入 以 Array 表示的多行数据 这种格式,所以一般要配合 strip_outer_array=true
使用。
这个功能要求 Array 中的每行数据的字段顺序完全一致。Doris 仅会根据第一行的字段顺序做解析,然后以下标的形式访问之后的数据。该方式可以提升 3-5X 的导入效率。
Doris 支持通过 JSON Path 抽取 JSON 中指定的数据。
注:因为对于 Array 类型的数据,Doris 会先进行数组展开,最终按照 Object 格式进行单行处理。所以本文档之后的示例都以单个 Object 格式的 Json 数据进行说明。
不指定 JSON Path
如果没有指定 JSON Path,则 Doris 会默认使用表中的列名查找 Object 中的元素。示例如下:
表中包含两列: id
, city
JSON 数据如下:
{ "id": 123, "city" : "beijing"}
则 Doris 会使用 id
, city
进行匹配,得到最终数据 123
和 beijing
。
如果 JSON 数据如下:
{ "id": 123, "name" : "beijing"}
则使用 id
, city
进行匹配,得到最终数据 123
和 null
。
指定 JSON Path
通过一个 JSON 数据的形式指定一组 JSON Path。数组中的每个元素表示一个要抽取的列。示例如下:
["$.id", "$.name"]
["$.id.sub_id", "$.name[0]", "$.city[0]"]
Doris 会使用指定的 JSON Path 进行数据匹配和抽取。
匹配非基本类型
前面的示例最终匹配到的数值都是基本类型,如整型、字符串等。Doris 当前暂不支持复合类型,如 Array、Map 等。所以当匹配到一个非基本类型时,Doris 会将该类型转换为 JSON 格式的字符串,并以字符串类型进行导入。示例如下:
JSON 数据为:
{ "id": 123, "city" : { "name" : "beijing", "region" : "haidian" }}
JSON Path 为 ["$.city"]
。则匹配到的元素为:
{ "name" : "beijing", "region" : "haidian" }
该元素会被转换为字符串进行后续导入操作:
"{'name':'beijing','region':'haidian'}"
匹配失败
当匹配失败时,将会返回 null
。示例如下:
JSON 数据为:
{ "id": 123, "name" : "beijing"}
JSON Path 为 ["$.id", "$.info"]
。则匹配到的元素为 123
和 null
。
Doris 当前不区分 JSON 数据中表示的 null 值,和匹配失败时产生的 null 值。假设 JSON 数据为:
{ "id": 123, "name" : null }
则使用以下两种 JSON Path 会获得相同的结果:123
和 null
。
["$.id", "$.name"]
["$.id", "$.info"]
完全匹配失败
为防止一些参数设置错误导致的误操作。Doris 在尝试匹配一行数据时,如果所有列都匹配失败,则会认为这个是一个错误行。假设 JSON 数据为:
{ "id": 123, "city" : "beijing" }
如果 JSON Path 错误的写为(或者不指定 JSON Path 时,表中的列不包含 id
和 city
):
["$.ad", "$.infa"]
则会导致完全匹配失败,则该行会标记为错误行,而不是产出 null, null
。
JSON Path 用于指定如何对 JSON 格式中的数据进行抽取,而 Columns 指定列的映射和转换关系。两者可以配合使用。
换句话说,相当于通过 JSON Path,将一个 JSON 格式的数据,按照 JSON Path 中指定的列顺序进行了列的重排。之后,可以通过 Columns,将这个重排后的源数据和表的列进行映射。举例如下:
数据内容:
{"k1" : 1, "k2": 2}
表结构:
k2 int, k1 int
导入语句1(以 Stream Load 为例):
curl -v --location-trusted -u root: -H "format: json" -H "jsonpaths: [\"$.k2\", \"$.k1\"]" -T example.json http://127.0.0.1:8030/api/db1/tbl1/_stream_load
导入语句1中,仅指定了 JSON Path,没有指定 Columns。其中 JSON Path 的作用是将 JSON 数据按照 JSON Path 中字段的顺序进行抽取,之后会按照表结构的顺序进行写入。最终导入的数据结果如下:
+------+------+
| k1 | k2 |
+------+------+
| 2 | 1 |
+------+------+
会看到,实际的 k1 列导入了 JSON 数据中的 "k2" 列的值。这是因为,JSON 中字段名称并不等同于表结构中字段的名称。我们需要显式的指定这两者之间的映射关系。
导入语句2:
curl -v --location-trusted -u root: -H "format: json" -H "jsonpaths: [\"$.k2\", \"$.k1\"]" -H "columns: k2, k1" -T example.json http://127.0.0.1:8030/api/db1/tbl1/_stream_load
相比如导入语句1,这里增加了 Columns 字段,用于描述列的映射关系,按 k2, k1
的顺序。即按 JSON Path 中字段的顺序抽取后,指定第一列为表中 k2 列的值,而第二列为表中 k1 列的值。最终导入的数据结果如下:
+------+------+
| k1 | k2 |
+------+------+
| 1 | 2 |
+------+------+
当然,如其他导入一样,可以在 Columns 中进行列的转换操作。示例如下:
curl -v --location-trusted -u root: -H "format: json" -H "jsonpaths: [\"$.k2\", \"$.k1\"]" -H "columns: k2, tmp_k1, k1 = tmp_k1 * 100" -T example.json http://127.0.0.1:8030/api/db1/tbl1/_stream_load
上述示例会将 k1 的值乘以 100 后导入。最终导入的数据结果如下:
+------+------+
| k1 | k2 |
+------+------+
| 100 | 2 |
+------+------+
Doris 支持通过 JSON root 抽取 JSON 中指定的数据。
注:因为对于 Array 类型的数据,Doris 会先进行数组展开,最终按照 Object 格式进行单行处理。所以本文档之后的示例都以单个 Object 格式的 Json 数据进行说明。
不指定 JSON root
如果没有指定 JSON root,则 Doris 会默认使用表中的列名查找 Object 中的元素。示例如下:
表中包含两列: id
, city
JSON 数据为:
{ "id": 123, "name" : { "id" : "321", "city" : "shanghai" }}
则 Doris 会使用id, city 进行匹配,得到最终数据 123 和 null。
指定 JSON root
通过 json_root 指定 JSON 数据的根节点。Doris 将通过 json_root 抽取根节点的元素进行解析。默认为空。
指定 JSON root -H "json_root: $.name"
。则匹配到的元素为:
{ "id" : "321", "city" : "shanghai" }
该元素会被当作新 JSON 进行后续导入操作,得到最终数据 321 和 shanghai
示例数据如下:
[
{"k1": 1, "k2": "a"},
{"k1": 2},
{"k1": 3, "k2": "c"}
]
表结构为:k1 int null, k2 varchar(32) null default "x"
导入语句如下:
curl -v --location-trusted -u root: -H "format: json" -H "strip_outer_array: true" -T example.json http://127.0.0.1:8030/api/db1/tbl1/_stream_load
用户可能期望的导入结果如下,即对于缺失的列,填写默认值。
+------+------+
| k1 | k2 |
+------+------+
| 1 | a |
+------+------+
| 2 | x |
+------+------+
| 3 | c |
+------+------+
但实际的导入结果如下,即对于缺失的列,补上了 NULL。
+------+------+
| k1 | k2 |
+------+------+
| 1 | a |
+------+------+
| 2 | NULL |
+------+------+
| 3 | c |
+------+------+
这是因为通过导入语句中的信息,Doris 并不知道 “缺失的列是表中的 k2 列”。 如果要对以上数据按照期望结果导入,则导入语句如下:
curl -v --location-trusted -u root: -H "format: json" -H "strip_outer_array: true" -H "jsonpaths: [\"$.k1\", \"$.k2\"]" -H "columns: k1, tmp_k2, k2 = ifnull(tmp_k2, 'x')" -T example.json http://127.0.0.1:8030/api/db1/tbl1/_stream_load
因为 JSON 格式的不可拆分特性,所以在使用 Stream Load 导入 JSON 格式的文件时,文件内容会被全部加载到内存后,才开始处理。因此,如果文件过大的话,可能会占用较多的内存。
假设表结构为:
id INT NOT NULL,
city VARHCAR NULL,
code INT NULL
导入单行数据1
{"id": 100, "city": "beijing", "code" : 1}
不指定 JSON Path
curl --location-trusted -u user:passwd -H "format: json" -T data.json http://localhost:8030/api/db1/tbl1/_stream_load
导入结果:
100 beijing 1
指定 JSON Path
curl --location-trusted -u user:passwd -H "format: json" -H "jsonpaths: [\"$.id\",\"$.city\",\"$.code\"]" -T data.json http://localhost:8030/api/db1/tbl1/_stream_load
导入结果:
100 beijing 1
导入单行数据2
{"id": 100, "content": {"city": "beijing", "code" : 1}}
指定 JSON Path
curl --location-trusted -u user:passwd -H "format: json" -H "jsonpaths: [\"$.id\",\"$.content.city\",\"$.content.code\"]" -T data.json http://localhost:8030/api/db1/tbl1/_stream_load
导入结果:
100 beijing 1
以 Array 形式导入多行数据
[
{"id": 100, "city": "beijing", "code" : 1},
{"id": 101, "city": "shanghai"},
{"id": 102, "city": "tianjin", "code" : 3},
{"id": 103, "city": "chongqing", "code" : 4},
{"id": 104, "city": ["zhejiang", "guangzhou"], "code" : 5},
{
"id": 105,
"city": {
"order1": ["guangzhou"]
},
"code" : 6
}
]
指定 JSON Path
curl --location-trusted -u user:passwd -H "format: json" -H "jsonpaths: [\"$.id\",\"$.city\",\"$.code\"]" -H "strip_outer_array: true" -T data.json http://localhost:8030/api/db1/tbl1/_stream_load
导入结果:
100 beijing 1
101 shanghai NULL
102 tianjin 3
103 chongqing 4
104 ["zhejiang","guangzhou"] 5
105 {"order1":["guangzhou"]} 6
以多行 Object 形式导入多行数据
{"id": 100, "city": "beijing", "code" : 1}
{"id": 101, "city": "shanghai"}
{"id": 102, "city": "tianjin", "code" : 3}
{"id": 103, "city": "chongqing", "code" : 4}
StreamLoad导入:
curl --location-trusted -u user:passwd -H "format: json" -H "read_json_by_line: true" -T data.json http://localhost:8030/api/db1/tbl1/_stream_load
导入结果:
100 beijing 1
101 shanghai NULL
102 tianjin 3
103 chongqing 4
数据依然是示例3中的多行数据,现需要对导入数据中的 code
列加1后导入。
curl --location-trusted -u user:passwd -H "format: json" -H "jsonpaths: [\"$.id\",\"$.city\",\"$.code\"]" -H "strip_outer_array: true" -H "columns: id, city, tmpc, code=tmpc+1" -T data.json http://localhost:8030/api/db1/tbl1/_stream_load
导入结果:
100 beijing 2
101 shanghai NULL
102 tianjin 4
103 chongqing 5
104 ["zhejiang","guangzhou"] 6
105 {"order1":["guangzhou"]} 7
array
或 array
列。{"k1": 39, "k2": ["-818.2173181"]}
{"k1": 40, "k2": ["10000000000000000000.1111111222222222"]}
curl --location-trusted -u root: -H "max_filter_ration:0.01" -H "format:json" -H "timeout:300" -T test_decimal.json http://localhost:8035/api/example_db/array_test_decimal/_stream_load
导入结果:
MySQL > select * from array_test_decimal;
+------+----------------------------------+
| k1 | k2 |
+------+----------------------------------+
| 39 | [-818.2173181] |
| 40 | [100000000000000000.001111111] |
+------+----------------------------------+
{"k1": 999, "k2": ["76959836937749932879763573681792701709", "26017042825937891692910431521038521227"]}
curl --location-trusted -u root: -H "max_filter_ration:0.01" -H "format:json" -H "timeout:300" -T test_largeint.json http://localhost:8035/api/example_db/array_test_largeint/_stream_load
导入结果:
MySQL > select * from array_test_largeint;
+------+------------------------------------------------------------------------------------+
| k1 | k2 |
+------+------------------------------------------------------------------------------------+
| 999 | [76959836937749932879763573681792701709, 26017042825937891692910431521038521227] |
+------+------------------------------------------------------------------------------------+
Routine Load 对 JSON 数据的处理原理和 Stream Load 相同。在此不再赘述。
对于 Kafka 数据源,每个 Massage 中的内容被视作一个完整的 JSON 数据。如果一个 Massage 中是以 Array 格式的表示的多行数据,则会导入多行,而 Kafka 的 offset 只会增加 1。而如果一个 Array 格式的 JSON 表示多行数据,但是因为 JSON 格式错误导致解析 JSON 失败,则错误行只会增加 1(因为解析失败,实际上 Doris 无法判断其中包含多少行数据,只能按一行错误数据记录)