Hadoop学习笔记——入门基础

Hadoop优势

  1. 高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。
  2. 高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点
  3. 高效性:在MapReduced的思想下,Hadoop是并行工作的,以加快任务处理速度。
  4. 高容错性:能够自动将失败的任务重新分配。

Hadoop各版本区别

在Hadoop1.x时代Hadoop中的MapReduce同时处理业务逻辑运算和资源的调度,耦合性较大。在Hadoop2.x时代,增加了Yarn。Yarn只负责资源的调度MapReduce只负责运算Hadoop3.x在组成上没有变化。

HDFS:分布式文件系统、

NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等.
DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验

YARN架构概述

1)ResourceManager(RM):整个集群资源(内存、CPU等)的老大
2)NodeManager(NM):单个节点服务器资源老大
3)ApplicationMaster(AM):单个任务运行的老大
4)Container:容器,相当于一台独立的服务器,里面封装了任务运行所需的资源,如内存、CPU、磁盘、网络等。
注意:

  • 客户端可以有多个
  • 集群上可以运行多个ApplicationMaster
  • 每个NodeManager上可以有多个Container

MapReduce架构

Map阶段:负责并行处理输入数据

Reduce阶段:对Map结果进行汇总

HDFS、YARN和MapReduce三者之间关系

Hadoop学习笔记——入门基础_第1张图片

 大数据技术生态体系

Hadoop学习笔记——入门基础_第2张图片

1)Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(MySQL)间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

2)Flume:Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;

3)Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统; 

4)Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。

5)Flink:Flink是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。

6)Oozie:Oozie是一个管理Hadoop作业(job)的工作流程调度管理系统。

7)Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。

8)Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

9)ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。

你可能感兴趣的:(hadoop,学习,笔记)