- 基于MATLAB串级控制系统仿真设计,基于MATLAB的精馏塔控制系统设计.doc
阳光泉
摘要:精馏技术是一种应用非常普遍的物料分离的化工装置,在工业中使用极其广泛。它的原理是根据物料的挥发程度的不同来实现物料的分离,以供制造不同的产品。随着工业的迅速发展,生产规模的不断扩大,化工产品种类也在飞速增多。为了促进能源的充分利用,使得精馏在工业过程控制领域中发挥了越来越重要的作用。不同的控制设计过程中使用不同的工业生产工艺,在现实的工业过程中应根据产品的质量要求、产品的工作环境以及能量耗散
- 绿色算力网络构建与智能调度实践
智能计算研究中心
其他
内容概要绿色算力网络的构建需以能效优化为核心,通过智能调度系统实现算力资源的高效整合与动态分配。当前架构设计包含三大核心模块:异构计算集群(涵盖GPU、FPGA及量子计算单元)、跨区域网络互联协议(适配东数西算的传输需求)以及能耗监测平台(基于实时数据建模的碳足迹追踪)。下表示例展示了典型算力节点的关键参数对比:节点类型计算密度(TFLOPS/m²)功耗比(TOPS/W)延迟控制(ms)量子计算集
- 跨领域算法安全优化与可解释实践
智能计算研究中心
其他
内容概要作为系统性研究框架,《跨领域算法安全优化与可解释实践》从算法研发的全生命周期切入,重点解决多领域交叉应用中的核心矛盾。通过整合联邦学习的分布式架构与量子计算的高效特性,构建兼顾隐私保护与运算效率的算法优化范式,同时引入动态可解释性分析技术,为医疗影像诊断、金融风险预测等高敏感场景提供决策透明度保障。在技术路径层面,研究聚焦特征工程的鲁棒性设计、超参数的自适应调优策略,以及生成对抗网络在数据
- 智能算法安全与跨领域创新实践
智能计算研究中心
其他
内容概要在智能算法快速渗透各行业的背景下,安全治理与技术创新已成为驱动跨领域应用的核心议题。当前研究重点围绕算法可解释性增强、动态风险评估及数据安全防护展开,通过融合联邦学习的分布式协作框架、量子计算的算力突破以及注意力机制的特征聚焦能力,构建起多模态技术融合的创新路径。在应用场景层面,医疗影像诊断、金融风险预测与自动驾驶系统等关键领域已形成算法效能与安全性的双重验证体系,其中超参数优化、特征工程
- 模型优化前沿趋势与行业应用实战
智能计算研究中心
其他
内容概要模型优化技术正经历从理论研究到产业落地的关键跃迁。随着自动化机器学习(AutoML)与边缘计算技术的深度融合,模型开发范式正从人工调参转向自动化、自适应优化。以联邦学习为代表的数据隐私保护技术,正在重构跨机构协作的模型训练范式,而量子计算与神经架构搜索(NAS)的结合,为超参数优化开辟了新维度。在应用层面,医疗影像识别准确率突破99%的突破性成果,验证了迁移学习在跨领域知识迁移中的巨大潜力
- 算力安全创新驱动未来趋势endofsentence
智能计算研究中心
其他
内容概要算力安全与技术创新正在重塑全球算力生态,其核心驱动力来自异构计算、边缘计算及量子计算等前沿技术的深度融合。当前算力架构正经历从集中式向分布式演进,通过异构加速芯片、动态资源调度算法及绿色能效优化,显著提升算力基础设施的可扩展性与可靠性。例如,异构计算通过CPU、GPU、FPGA的协同加速,使复杂模型训练效率提升40%以上。关键数据:根据IDC预测,到2025年全球智能算力需求将增长30倍,
- 【电机控制器】ESP32C3——持续更新
Kisorge
单片机
【电机控制器】ESP32C3——持续更新文章目录@[TOC](文章目录)前言一、ADC、PWM、UART二、语言模型四、参考资料总结前言使用工具:提示:以下是本篇文章正文内容,下面案例可供参考一、ADC、PWM、UART【电机控制器】ESP32-C3芯片——PWM、ADC二、语言模型【电机控制器】ESP32-C3语言模型——豆包【电机控制器】ESP32-C3语言模型——DeepSeek【电机控制器
- PCB 制版的注意事项
菜只因C
stm32
一、设计阶段(一)布局规划元件间距:元件间距的设置在PCB设计中至关重要,它直接影响到电路板的可制造性、可维护性以及散热性能。对于手工焊接,元件引脚间距离不小于1mm是较为安全的标准,这能让操作人员有足够空间准确地将焊料施加到引脚连接处,避免因空间狭窄导致的焊接短路或虚焊问题。例如在一个采用直插式元件较多的电源模块中,电解电容、功率电阻等元件引脚间距如果小于1mm,焊接时电烙铁头很容易同时接触到相
- 10 大中文医学数据集汇总:涵盖神农中医药、中医药古籍、医学推理、医学问答……
医疗人工智能的快速发展离不开高质量数据集的支持。从疾病诊断到药物研发,再到个性化医疗,数据集在推动机器视觉、大模型等应用于医学领域中发挥着不可或缺的作用。医学数据集的形式多样,涵盖了不同维度和领域的数据资源。例如,在疾病诊断领域,像RJUA-QA这样的问答数据集推动了复杂医学知识的自动化应用;而在中医药领域,神农中医药数据集整合了传统中医药文献、临床案例和药方数据。针对于此,本文整理了医学领域的1
- 《 YOLOv5、YOLOv8、YOLO11训练的关键文件:data.yaml文件编写全解》
空云风语
人工智能YOLO机器视觉目标跟踪人工智能计算机视觉YOLO
走进YOLOv5、YOLOv8、YOLO11的data.yaml在计算机视觉领域的广袤星空中,目标检测无疑是一颗璀璨的明星,它广泛应用于自动驾驶、智能安防、工业检测、医疗影像分析等众多关键领域,发挥着不可或缺的作用。而YOLO系列算法,更是以其独特的“一次看全(YouOnlyLookOnce)”理念和卓越的性能,在目标检测领域中独树一帜,成为了众多研究者和开发者的首选工具。从最初的YOLOv1横空
- 关联规则算法:揭秘数据中的隐藏关系,从理论到实战
秋声studio
机器学习算法详解关联规则算法数据挖掘Apriori算法FP-Growth算法大数据优化数据预处理增量式更新
引言在当今数据驱动的时代,如何从海量数据中挖掘出有价值的信息成为了各行各业的核心挑战。关联规则算法作为数据挖掘领域的重要工具,能够帮助我们发现数据中隐藏的关联关系,从而为决策提供支持。无论是电商平台的商品推荐,还是医疗领域的疾病诊断,关联规则算法都展现出了强大的应用潜力。本文将从基础概念出发,逐步深入探讨关联规则算法的核心原理、经典算法及其优化策略。无论你是数据挖掘的初学者,还是希望进一步了解关联
- 哪个AI论文生成助手好用?5 款AI论文工具深度评测
AI论文图鉴
人工智能
2025年,AI论文写作工具如雨后春笋般涌现,迅速在学术圈走红。身为一个常被论文写作困扰的“懒人”,我对这些工具的实际表现充满好奇。于是,我亲测了五款当下国内外最热门的AI论文写作助手,从功能、交互、写作水平、写作效率等维度进行全面评测,结果令人惊喜。相信这篇文章能为仍在观望的你带来新的启发与认识。这次测评,我挑选了五款极具代表性的AI工具,以“基于大语言模型的医疗诊断研究”为主题,看它们如何大显
- 警惕AI神话破灭:深度解析大模型缺陷与禁用场景指南
领码科技
AI应用IT职场大模型缺陷AI工具风险伦理挑战应用场景限制可信AI
摘要当前AI大模型虽展现强大能力,但其本质缺陷可能引发系统性风险。本文从认知鸿沟、数据困境、伦理雷区、技术瓶颈四大维度剖析大模型局限性,揭示医疗诊断、法律决策等8类禁用场景,提出可信AI建设框架与用户防护策略。通过理论分析与实操案例结合,为规避AI工具风险提供系统性解决方案。关键词:大模型缺陷、AI工具风险、伦理挑战、应用场景限制、可信AI一、认知鸿沟:无法企及的人类智慧1.1创造性思维的致命短板
- “大语言模型微调”(Fine-tuning)与“大语言模型应用”(LLM Applications)之间的区别
AI Echoes
人工智能机器学习深度学习
1.概念与定义大语言模型微调微调指的是在一个经过大规模预训练的通用语言模型基础上,利用针对性较强的小规模数据集对模型进行进一步训练,从而使模型在特定领域或任务上表现得更优秀。目标:使模型更好地适应特定任务(如医疗问答、法律咨询、编程辅助等),提高准确性和专业性。方法:可以是全参数微调,也可以采用参数高效微调(如LoRA、Adapter、PrefixTuning等),后者只调整部分参数而保持原有权重
- 【实战ES】实战 Elasticsearch:快速上手与深度实践-6.2.2GDPR数据脱敏处理
言析数智
实战elasticsearch大数据搜索引擎
点击关注不迷路点击关注不迷路点击关注不迷路文章大纲6.2.2GDPR数据脱敏处理深度实践指南1.GDPR核心要求映射1.1关键条款与技术要求1.2`数据类型与脱敏策略`2.全链路脱敏配置2.1`动态脱敏管道`2.2静态脱敏模板3.`脱敏算法性能对比`3.1算法性能矩阵3.2存储成本分析4.企业级合规方案4.1金融行业案例4.2医疗行业方案5.合规性验证方案5.1自动化检查脚本5.2审计检查清单6.
- 一学就会的深度学习基础指令及操作步骤(6)迁移学习
小圆圆666
深度学习迁移学习人工智能卷积神经网络
文章目录迁移学习模型准备数据增强模型训练模型微调和预测检查预测结果迁移学习迁移学习是将一个任务中学到的知识应用到另一个相关任务上,以提高新任务的学习效率和性能。优势:节省训练时间,提高模型性能,尤其在小数据场景下效果显著。核心是利用源域的知识来帮助目标域任务,比如在ImageNet上预训练的模型用于医疗影像分类。源域(SourceDomain):已有知识的领域(如ImageNet图像库)。目标域(
- 领域大模型之微调技术和最佳实践
程序员莫玛
人工智能深度学习语言模型金融
BERT和GPT-3等语言模型针对语言任务进行了预训练。微调使它们适应特定领域,如营销、医疗保健、金融。在本指南中,您将了解LLM架构、微调过程以及如何为NLP任务微调自己的预训练模型。-介绍-大型语言模型(LLM)的特别之处可以概括为两个关键词——大型和通用。“大”是指它们训练的海量数据集及其参数的大小,即模型在训练过程中学习的记忆和知识;“通用”意味着他们具有广泛的语言任务能力。更明确地说,L
- 利用AI大模型,破解医疗数据困境_医疗ai大模型
喝不喝奶茶丫
人工智能语言模型大模型深度学习AI大模型AI机器学习
随着AI技术飞跃,医疗基础模型在2023年逐渐涌现。它们不仅能深刻理解临床数据,还能生成富有洞见的医疗知识。从影像诊断到药物研发,这些模型正逐步改写医疗服务的未来。然而,数据量有限、标注成本高、多模态数据融合困难等挑战仍旧存在。如何在确保隐私的前提下,高效利用有限的医疗数据?医疗数据困境新解:基础模型医疗诊断对减少疾病发生、降低死亡率、提高民众健康水平具有重要意义。高质量的医疗数据在其中扮演了不可
- 《美图AI:解锁视觉创作新宇宙》
空云风语
人工智能人工智能
美图AI:开启视觉创作新时代在当今数字化浪潮汹涌澎湃的时代,人工智能(AI)已成为推动各领域变革与创新的核心驱动力。从智能家居到智能交通,从医疗保健到金融服务,AI的身影无处不在,正以前所未有的速度改变着我们的生活和工作方式。在视觉创作领域,AI同样掀起了一场革命,而美图AI便是这场革命中的佼佼者,成为无数创作者和普通用户手中的得力工具,引领着视觉创作进入一个全新的时代。回首视觉创作的发展历程,从
- 基于SpringBoot的智能问诊系统设计与隐私保护策略
大熊计算机
技术博文springboot后端java
通过SpringBoot框架,我们可以快速搭建一个智能问诊系统,为用户提供便捷的线上医疗服务。然而,在系统设计和实现过程中,如何保障用户的隐私和数据安全,始终是一个亟需关注的问题。本文将探讨基于SpringBoot的智能问诊系统的设计原理、开发实践及隐私保护策略。1.智能问诊系统概述智能问诊系统是基于人工智能、数据分析及信息技术等手段,通过网络平台为用户提供医疗咨询、初步诊断、健康管理等服务的系统
- CMOS电平标准详解
美好的事情总会发生
接口接口电平电平标准单片机嵌入式硬件硬件工程
一、CMOS电平标准的定义CMOS(ComplementaryMetal-Oxide-Semiconductor,互补金属氧化物半导体)电平标准是一种基于CMOS工艺的数字逻辑电平规范,用于定义逻辑高电平(HIGH)和低电平(LOW)的电压范围。其核心特点是低功耗、高噪声容限和宽工作电压范围,已成为现代数字电路设计的通用标准。二、CMOS电平标准的核心特性电压范围典型工作电压:5VCMOS:传统标
- 解密DeepSeek-R1模型微调实战:VIP专属技巧助你轻松掌握行业核心技术
竹木有心
人工智能
引言大模型微调已成为AI工程师的核心竞争力,但90%的学习者卡在以下痛点:❌开源数据集质量参差不齐❌实验环境搭建耗时易出错❌行业级调优方案闭源难获取CSDN大模型VIP专项计划针对上述问题,提供:✅金融/医疗/法律三大领域高质量微调数据集✅云端GPU实验环境即开即用✅行业头部企业实战案例库(附完整代码)一、基础篇:快速搭建微调环境(免费技巧)1.1使用HuggingFace标准流程fromtran
- deepseek 本地搭建的好处是什么
rockmelodies
pythondeepseekai大模型本地搭建
在本地搭建DeepSeek(或类似AI模型/工具)的主要好处体现在以下几个方面,尤其适合对数据隐私、定制化需求或长期成本控制有较高要求的企业或组织:数据隐私与安全敏感数据保护:数据完全存储在本地,无需上传至第三方服务器,避免传输或云端存储过程中的泄露风险,尤其适合金融、医疗、法律等涉及敏感信息的行业。合规性:满足GDPR、HIPAA或国内《数据安全法》等法规对数据本地化存储的要求,避免跨境传输的法
- 利用CUDA与OpenCV实现高效图像处理:全面指南
快撑死的鱼
C++(C语言)算法大揭秘opencv图像处理人工智能
利用CUDA与OpenCV实现高效图像处理:全面指南前言在现代计算机视觉领域,图像处理的需求日益增加。无论是自动驾驶、安防监控,还是医疗影像分析,图像处理技术都扮演着至关重要的角色。然而,图像处理的计算量非常大,往往需要强大的计算能力来保证实时性和高效性。幸运的是,CUDA和OpenCV为我们提供了一种高效的图像处理解决方案。本篇文章将详细介绍如何结合CUDA与OpenCV,利用GPU的强大计算能
- “面面俱到”!人脸活体检测让应用告别假面攻击
harmonyos
随着人脸识别技术在金融、医疗等多个领域的加速落地,网络安全、信息泄露等问题愈为突出,用户对应用稳定性和安全性的要求也更为严格。HarmonyOSSDK场景化视觉服务(VisionKit)提供人脸动作活体检测能力,增强对于非活体攻击的防御能力和活体通过率。在投资理财、在线支付等高风险金融服务场景中,通过检测用户的组合动作等来验证用户为真实活体操作,抵御攻击,提高安全性,降低业务风险,全方位保障用户体
- r99950X3D参数 锐龙r99950X3D性能怎么样 r9 9950X3D相当于什么水平
2501_90583960
其他
锐龙r99950X3D采用Zen5架构和4纳米生产工艺16核心32线程基础频率为4.3GHz,最高加速频率5.7GHz热设计功耗(TDP)为170W锐龙r99950X3D组装电脑怎么搭配更合适这些点很重要http://www.adiannao.cn/du
- 高速PCB设计(布线设计)
四代目 水门
高速PCB设计学习笔记fpga开发嵌入式硬件pcb工艺
以下是针对高速PCB布线设计的综合笔记,结合用户提供的设计规范及行业通用原则整理而成:一、关键信号布线原则布线优先级顺序:射频信号>中/低频信号>时钟信号>高速信号射频信号需包地处理,线宽≥8mil且满足阻抗要求,禁止无关信号穿越射频区域阻抗控制优先选择地平面作为参考层,线宽/间距按工艺计算结果严格控制5G以上高速信号需在过孔处增加回流地孔拓扑结构DDR2以下用T型拓扑,DDR3以上建议菊花链拓扑
- 香橙派首款高性能开源 RISC-V 开发板 OrangePi RV 即将开售
自不量力的A同学
risc-v
香橙派首款高性能开源RISC-V开发板OrangePiRV即将开售,以下是关于它的详细介绍123:价格2GB版本:创客价229元,原价249元。4GB版本:创客价279元,原价299元。8GB版本:创客价379元,原价399元。硬件性能处理器:搭载RISC-V四核处理器昉・惊鸿7110,采用28纳米工艺制造,CPU稳定工作频率1.5GHz,能进行3D图像渲染,提供H.264/H.265视频编解码I
- 物联网通过数字孪生技术实现设备状态的实时仿真和优化
小赖同学啊
智能硬件物联网
数字孪生(DigitalTwin)是一种通过虚拟模型实时映射和仿真物理设备状态的技术。它结合了物联网(IoT)、大数据、人工智能(AI)和仿真技术,能够实现对设备状态的实时监控、预测和优化。以下是数字孪生技术在设备状态实时仿真和优化中的应用及实现路径:一、数字孪生的核心概念1.物理实体实际的设备或系统(如工厂设备、风力发电机、汽车)。2.虚拟模型物理实体的数字化表示,通常包括几何模型、行为模型和数
- 【Flutter入门】3.深入理解Flutter的核心概念:架构、渲染与生命周期
西辰Knight
flutter入门flutter架构android
想要成为一名出色的Flutter开发者,就像建造一座精美的高楼大厦,需要深入理解其架构基础、渲染工艺和生命周期管理。Flutter架构原理:精心设计的层级大厦整体架构概览:Flutter的三层宝塔想象Flutter的架构就像一座精美设计的三层宝塔,每一层都有其独特的职责和魅力。通过这种分层架构设计,Flutter成功实现了高性能的跨平台开发能力。让我们来看看这座宝塔的独特之处:分层设计:就像建筑的
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo