- 【图像处理基石】如何入门大规模三维重建?
小米玄戒Andrew
图像处理基石深度学习人工智能三维重建大规模三维重建立体视觉大模型LLM
入门大规模三维重建需要从基础理论、核心技术到实践工具逐步深入,同时需关注该领域的经典工作和前沿进展。以下是分阶段的入门路径及值得重点学习的工作:一、基础理论与前置知识大规模三维重建的核心是从海量图像或传感器数据中恢复场景的三维结构,涉及计算机视觉、摄影测量、图形学、最优化等多个领域,需先掌握以下基础:数学基础线性代数:矩阵运算、特征值分解(用于相机姿态估计)、奇异值分解(SVD,用于基础矩阵求解)
- 计算机视觉算法实战——关键点检测
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.引言关键点检测(KeypointDetection)是计算机视觉领域中的一个重要研究方向,旨在从图像或视频中检测出具有特定语义信息的关键点。这些关键点通常代表了物体的特定部位或特征,例如人体的关节、面部特征点、车辆的轮子等。关键点检测在姿态估计、动作识别、目标跟踪、三维重建等任务中
- 【稀疏三维重建】Flash3D:单张图像重建场景的GaussianSplatting
杀生丸学AI
计算机视觉人工智能大模型稀疏三维重建立体几何单目深度估计
项目主页:https://www.robots.ox.ac.uk/~vgg/research/flash3d/来源:牛津、澳大利亚国立文章目录摘要1.引言2.相关工作3.方法3.1背景:从单个图像中重建场景3.2单目前向的多个高斯4.实验4.14.2跨域新视角合成4.3域内新视图合成摘要 Flash3D,一种通用的单一图像场景重建。模型从一个单目深度估计的“基础”模型开始,扩展到一个完整的三维形
- 纹理贴图算法研究论文综述
点云SLAM
算法图形图像处理算法纹理贴图计算机图形学计算机视觉人工智能虚拟现实(VR)纹理贴图算法综述
纹理贴图(TextureMapping)是计算机图形学和计算机视觉中的核心技术,广泛应用于三维重建、游戏渲染、虚拟现实(VR)、增强现实(AR)等领域。对其算法的研究涵盖了纹理生成、映射、缝合、优化等多个方面。1.引言纹理贴图是指将二维图像纹理映射到三维几何表面上,以增强模型的视觉真实感。传统方法主要关注静态几何模型上的纹理生成与映射,而近年来,随着多视角图像重建、RGB-D扫描、神经渲染的发展,
- 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建(续)
格图素书
算法人工智能
目录3.4点云数据精简3.4.1数据精简的要求3.4.2经典精简算法分析3.5点云三维重建算法3.5.1曲面重建方式的分类3.5.2点云数据的三角剖分3.5.3Delaunay三角剖分算法3.5.4贪婪投影三角化算法3.5.5泊松曲面重建算法4特征保留优化的点云精简4.1引言4.2点云精简的思想4.3基于图信号的特征保留优化的点云精简算法4.3.2定义密度均匀性损失4.4点云精简实验结果及分析5隧
- NeRF-Pytorch:NeRF神经辐射场复现——Pytorch版全流程分析与测试【Ubuntu20.04】【2025最新版!!!】
那就举个栗子!
三维重建计算机视觉人工智能
一、引言在计算机视觉和计算机图形学的交叉领域中,视图合成(ViewSynthesis)一直是一个充满挑战的研究方向。传统的三维重建方法往往需要复杂的几何建模和纹理映射过程,而且在处理复杂光照和材质时效果有限。2020年,来自UCBerkeley的研究团队提出了NeuralRadianceFields(NeRF),这一革命性的方法彻底改变了我们对三维场景表示和渲染的理解。NeRF的核心思想是将三维场
- OpenCV 三维重建实战:从工业检测到自动驾驶,3 大场景代码全解析
从零开始学习人工智能
opencv自动驾驶数码相机
:工业零部件三维建模与检测案例背景:在汽车制造工厂,对于复杂形状的发动机零部件质量检测与逆向工程需求,需要高精度的三维模型。传统检测方法效率低且精度有限,而三维重建技术可快速获取零部件三维信息,实现高效检测与设计优化。技术实现:使用多个相机从不同角度拍摄零部件,利用calib3d模块进行相机标定,获取准确的相机内参和外参。通过特征点检测与匹配算法(如SIFT、ORB等)找到不同图像间的对应点,再用
- CVPR 2024 3D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)
1、3D方向Rapid3DModelGenerationwithIntuitive3DInputInstantaneousPerceptionofMovingObjectsin3DNEAT:Distilling3DWireframesfromNeuralAttractionFields⭐codeSculptingHolistic3DRepresentationinContrastiveLangua
- OpenCV实现相机标定的棋盘格制作与应用
BIG-HO
本文还有配套的精品资源,点击获取简介:在计算机视觉领域,棋盘格标定板用于获取相机参数,实现图像校正和三维重建。OpenCV库提供了绘制棋盘格和相机标定的功能。本文将详细介绍如何使用OpenCV制作棋盘格标定板,包括设计、绘制、保存、相机标定过程和应用。通过实际案例,如畸变矫正、三维重建、AR应用和机器人导航,展示棋盘格标定板在视觉技术中的关键作用。1.棋盘格设计与绘制1.1棋盘格的基本概念与应用棋
- OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算
OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算【下载地址】OpenCV双目视觉棋盘格标定特征匹配及三维坐标计算OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算本资源库提供了基于OpenCV的双目视觉系统标定和三维重建基础教程,专注于利用棋盘格作为特征目标进行相机校准,特征点匹配以及随后的三维坐标计算项目地址:https://gitcode.com/open-source-toolki
- 产教融合3.0时代:数字影像产业园‘人才+产业+创新’生态闭环构建
cdsmjt
企业微信
产教融合3.0时代,数字影像产业园构建“人才+产业+创新”生态闭环,需要从以下几个关键环节入手:一、人才培养:以产业需求为导向校企深度合作:打破传统“单向输送”模式,构建双向互动机制。高校与企业共同制定人才培养方案,课程设置紧贴产业前沿技术和岗位需求。实战化教学:建设实训基地,引入真实项目,让学生在实践中掌握技能。例如,可以参照“雅职·海信人工智能医学影像三维重建生产性实训基地”模式,打造高仿真的
- 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建
格图素书
网络
目录前言国内外研究现状隧道监测研究现状表面重建研究现状2二维激光雷达三维扫描系统设计与实现2.1引言2.2系统设计2.2.1需求分析2.2.2方案设计2.3传感器方案选型2.3.1激光雷达测量技术介绍2.3.2激光雷达系统结构2.3.3激光雷达选型2.3.4IMU硬件选择2.42DLidar-IMU坐标系定义与变换2.4.1坐标系定义2.4.2激光雷达与IMU坐标变换2.5系统平台2.6系统扫描实
- TopNet:基于Transformer的高效点云几何压缩网络模型详解
清风AI
深度学习算法详解及代码复现计算机视觉算法深度学习人工智能计算机视觉神经网络transformer卷积神经网络python
一、研究背景与挑战随着激光雷达(LiDAR)技术的普及,点云数据在自动驾驶、三维重建等领域得到广泛应用。然而,点云数据的无序性、稀疏性给存储和传输带来巨大挑战。传统的点云几何压缩(PCGC)方法难以平衡压缩率与精度,而深度学习方法逐渐成为主流。现有方法主要分为两类:CNN-based方法:通过3D卷积提取局部特征,但受限于固定感受野,难以捕捉长距离依赖。Transformer-based方法:利用
- 基于Python+OpenCV实现SIFT
2301_79809972
pythonpythonplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景与意义SIFT(Scale-InvariantFeatureTransform,尺度不变特征变换)是一种在计算机视觉中广泛应用的局部图像特征描述子。由于其具有尺度不变性、旋转不变性和对光照变化、仿射变换和噪声的鲁棒性,SIFT在图像匹配、物体识别、三维重建等领域
- AIGC虚拟人物VS传统3D建模:技术对比与优劣势分析
AI原生应用开发
AI原生应用开发AIGC3dai
AIGC虚拟人物VS传统3D建模:技术对比与优劣势分析关键词:AIGC虚拟人物、传统3D建模、生成对抗网络、三维重建、数字孪生、自动化生成、手工建模摘要:本文从技术原理、实现流程、应用场景等维度,深入对比AIGC(人工智能生成内容)虚拟人物与传统3D建模技术。通过剖析核心算法、数学模型和工程实践案例,揭示两者在生产效率、成本控制、艺术表现力等方面的差异。结合具体代码实现和行业应用场景,分析各自的优
- nerf-slam论文复现
搬砖者(视觉算法工程师)
gitpython深度学习
nerf-slam实现三维重建详细的在我文档里面(有图片步骤)TableofContentsInstallDownloadDatasetsRunCitationLicenseAcknowledgmentsContactInstallClonerepowithsubmodules:gitclonehttps://github.com/ToniRV/NeRF-SLAM.git--recurse-sub
- 什么是三维重建?如何从二维图像获取三维信息?——从原理到实战的深度解析
唐宇迪(学习规划+技术答疑)
人工智能深度学习神经网络计算机视觉三维重建机器学习pytorch
大家好,我是唐宇迪。这几年带学员做计算机视觉项目时,发现三维重建是绕不开的核心技术——有人用单目摄像头重建物体模型,有人用多视图构建建筑BIM模型,还有人在医疗领域通过CT图像重建器官三维结构。但新手常被相机标定、对极几何、点云配准等概念困扰,甚至混淆三维重建与三维建模的区别。作为计算机视觉的重要分支,三维重建让二维图像拥有了深度信息,在工业检测、医疗诊断、元宇宙等领域发挥关键作用。今天这篇600
- 【OpenCV】双相机结构光成像与图像交叉融合实现【python篇】
社会零时工
OpenCVpythonopencvpython相机
双相机结构光成像与图像交叉融合实现下面我将详细介绍如何使用Python实现双相机结构光成像系统及其图像交叉融合技术。这个系统通常用于三维重建、工业检测等领域。系统架构概述双相机结构光系统通常包含以下组件:两个同步的工业相机结构光投影仪(DLP或LCD)计算机处理系统标定装置实现步骤1.硬件设置与相机同步importcv2importnumpyasnpimporttimeclassDualCamer
- 【云计算系统】云计算中的计算几何
flyair_China
云计算
一、云计算系统中的几何算法云计算系统在资源调度、空间数据处理、安全加密及大规模优化等场景中广泛运用几何算法以提升效率与精度。空间数据处理与索引算法空间索引算法(R树、四叉树)作用:高效管理地理空间数据(如地图坐标、三维点云),支持快速范围查询与邻近搜索。应用:云GIS平台中实时查询地理信息(如道路、建筑位置);物流路径规划中缩短计算时间50%以上。三维重建算法(三角剖分、曲面重建)作用:将点云数据
- 散斑结构光测试图像资源介绍:为三维重建提供高质量图像资源
散斑结构光测试图像资源介绍:为三维重建提供高质量图像资源【下载地址】散斑结构光测试图像资源介绍本项目提供了一套高质量的散斑结构光测试图像资源,专为散斑结构光研究与实验设计。这些图像不仅适用于三维重建和特征提取等高级研究,还配有详细的处理说明,帮助研究人员快速上手并深入探索。通过使用本资源,您可以轻松开展散斑结构光相关的实验,提升研究效率与精度。所有资源均可在合法合规的前提下自由使用,助力您的科研创
- Neus复现(DTU数据集)
ashore_xsl
python3d算法linux
复现参考链接:1、Ubuntu复现NeuS(用体绘制学习神经隐式曲面用于多视图重建)——NeRF应用:表面重建_neus复现-CSDN博客2、Ubuntu18.04复现NeuS(Pytorch)_neus复现-CSDN博客3、GitHub-Totoro97/NeuS:CodereleaseforNeuS4、【三维重建】【深度学习】【数据集】基于COLMAP制作自己的NeuS(DTU格式)数据集_d
- 【深度学习新浪潮】如何入门三维重建?
小米玄戒Andrew
深度学习新浪潮图像处理基石深度学习人工智能图像处理计算机视觉python视觉几何opencv
入门三维重建算法技术需要结合数学基础、计算机视觉理论、编程实践和项目经验,以下是系统的学习路径和建议:一、基础知识储备1.数学基础线性代数:矩阵运算、向量空间、特征分解(用于相机矩阵、变换矩阵推导)。几何基础:三维几何(点、线、面的表示)、射影几何(单应矩阵、本质矩阵、基础矩阵)、李群与李代数(SLAM中的位姿优化)。概率与统计:贝叶斯估计、概率图模型(SLAM中的状态估计)、随机过程(滤波算法如
- 基于 SIFT 对图像进行局部特征匹配附Matlab代码
Matlab科研工作室
matlab计算机视觉开发语言
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍图像匹配是计算机视觉领域的一项基础且关键的技术,它旨在寻找不同图像之间的对应关系,进而为物体识别、三维重建、图像拼接等高级应用提供坚实的基础。在众多的图像匹配方法中,局部特征
- 千亿医疗AI市场爆发:三甲医院如何靠大模型实现90%诊断准确率?
摆烂大大王
llamadeepseek人工智能llamadeepseekAIGC健康医疗
凌晨三点的北京协和医院放射科,最后一份胸部CT影像被输入AI系统。屏幕瞬间标记出5处微小结节,三维重建图精准勾勒血管绕行路径,并弹出历史对比数据:“3号结节体积半年增长15%,边缘毛刺征阳性,建议穿刺活检”。主治医师轻点审核键,结构化报告自动生成——这是2025年中国顶级三甲医院的日常一幕,也是AI大模型重构医疗诊断链的缩影。一、技术突破:从单点试用到临床刚需影像诊断进入“秒级时代”肺结节检测:A
- 相机成像原理_键盘摄影(一)——相机成像基本元件
weixin_39620273
相机成像原理
写在前面笔者在就读本科期间,开始接触计算机视觉领域,主要包括传统的图像处理,研究生期间开始了解深度学习,三维重建和SLAM(同时定位和建图)。可是对于其中使用到的最重要的传感器,相机,它的成像原理知之甚少,照片是怎么成像的?有幸在工作之余玩起了胶片相机,学习了一些摄影知识,在此和大家分享相关知识,欢迎友好地指正和勘误,轻喷。随着器件的发展,目前的相机类型丰富,我们可以从基本的元件讲起,主要涉及到胶
- 科研论文术语全解析:彻底搞懂什么是Baseline、Pipeline..........等内容【2025最新版!!!】
那就举个栗子!
计算机视觉解决方案人工智能
引言在撰写科研论文的过程中,尤其是在计算机视觉、机器人、SLAM以及三维重建等领域,准确理解并使用核心术语对于展示研究的科学性、系统性具有至关重要的作用。术语不仅是论文结构的骨架,也是向同行传达研究设计与创新思路的重要桥梁。本文旨在从实际科研写作的角度,系统性分析高频科研术语的定义与应用,帮助初学者准确理解其含义,掌握其写作位置与逻辑,最后以SLAM与3D高斯泼溅(3DGaussianSplatt
- 智能光学计算成像技术与应用前沿会议通知
m0_75133639
光电光学成像全息成像光学光电光子学光电工程师生物医学工程
会议背景智能光学计算成像是人工智能与光学成像深度融合的前沿领域,通过深度学习、光学神经网络、超表面光学及量子光学等技术,显著推动成像技术的革新。当前研究热点包括:-深度学习赋能的成像技术:如高速多模光纤成像、神经渲染全息三维重建、超分辨率成像-先进光谱与计算成像:基于超表面和衍射光栅的高光谱信息获取、压缩感知成像、无透镜成像-端到端联合设计:融合可微光学模型与深度学习算法,实现硬件-软件协同优化会
- 人工智能在医疗影像诊断上的最新成果:更精准地识别疾病
广州正荣
人工智能科技大数据
摘要:本论文深入探讨人工智能在医疗影像诊断领域的最新突破,聚焦于其在精准识别疾病方面的显著成果。通过分析深度学习、多模态影像融合、三维重建与可视化以及智能辅助诊断系统等关键技术的应用,阐述人工智能如何提高医疗影像诊断的准确性和效率,为临床诊断和治疗提供有力支持。同时,讨论当前面临的挑战和未来发展趋势,旨在推动人工智能在医疗领域的更广泛应用和深入发展。一、医疗影像诊断在现代医学中占据着核心地位,其准
- OpenCV4与OpenCV-Contrib模块介绍
weixin_43162015
计算机视觉人工智能opencv
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档OpenCV4与OpenCV-Contrib模块介绍一、OpenCV常用模块二、扩展模块一、OpenCV常用模块位于:D:\OpenCV\4.5.5\build\modules各模块的功能如下:calib3d:该模块由相机校准(calibration)和三维重建(3d)两个部分组成,主要用于相机标定与三维视觉等;core:OpenCV
- 【SLAM中的点云处理:从基础到实战】
Unpredictable222
SLAM算法自动驾驶自主导航算法自动驾驶ubuntuc++笔记
最近一直在学SLAM算法,发现点云处理是非常非常重要的,我就再认真学了一遍关于点云处理的内容(看了高翔老师的一本书——《自动驾驶与机器人中的SLAM技术:从理论到实践》,写得非常好,还有配套的代码),这篇博客就作为我的点云处理学习笔记,分享给大家!1.引言点云在SLAM中的核心作用:激光雷达SLAM(如LOAM)、三维重建、自动驾驶感知。四大基础任务:最近邻搜索(数据关联、特征匹配)。几何拟合(平
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开