TensorFlow实战教程(十九)-Keras搭建循环神经网络分类案例及RNN原理详解

从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章分享了卷积神经网络CNN原理,并通过Keras编写CNN实现了MNIST分类学习案例。这篇文章将详细讲解循环神经网络RNN的原理知识,并采用Keras实现手写数字识别的RNN分类案例及可视化呈现。基础性文章,希望对您有所帮助!

TensorFlow实战教程(十九)-Keras搭建循环神经网络分类案例及RNN原理详解_第1张图片

TensorFlow实战教程(十九)-Keras搭建循环神经网络分类案例及RNN原理详解_第2张图片 

一.循环神经网络
在编写代码之前,我们需要介绍什么是RNN,RNN是怎样运行的以及RNN的结构。

1.RNN原理
循环神经网络英文是Recurrent Neural Networks,简称RNN。RNN的本质概念是利用时序信息,在传统神经网络中,假设所有的输入(以及输出)都各自独立。但是,对于很多任务而言,这非常局限。举个例子,假如你想根据一句没说完的话,预测下一个单词,最好的办法就是联系上下文的信息。而RNN(循环神经网络)之所以是“循环”,是因为它们对序列的每个元素执行相同的任务,而每次的结果都独立于之前的计算。

假设有一组数据data0、data1、data2、data3,使用同一个神经网络预测它们,得到对应的结果。如果数据之间是有关系的,比如做菜下料的前后步骤,英文单词的顺序,如何让数据之间的关联也被神经网络学习呢?这就要用到——

你可能感兴趣的:(TensorFlow实战教程,tensorflow,keras,rnn)