- 实操数据预处理:从理论到实践的基础步骤
炼丹侠
python机器学习人工智能
在快速发展的人工智能领域,数据不仅是基础,更是推动技术创新的关键力量。高质量的数据集是构建高效、准确模型的前提。本文将全面深入探讨数据预处理的各个环节,从基础的数据清洗到复杂的数据增强,再到高效的Python应用实践,为你提供一站式的数据处理解决方案。无论你的经验如何,这篇文章都将成为你宝贵的资源。数据清洗:打好数据质量的基础数据清洗是提升数据质量的首要步骤,涵盖了如下几个关键操作:缺失值的智能处
- BP神经网络及其Python和MATLAB实现预测
陈辰学长
神经网络pythonmatlab
BP神经网络及其Python和MATLAB实现预测引言BP神经网络(BackPropagationNeuralNetwork),即反向传播神经网络,是一种通过反向传播算法进行监督学习的多层前馈网络。这种网络能够通过不断地调整和改变神经元的连接权重,达到对特定任务的学习和优化。由于其高度的灵活性和适应性,BP神经网络在模式识别、函数逼近、优化问题等多个领域有着广泛的应用。本文将详细介绍BP神经网络的
- 大模型介绍
詹姆斯爱研究Java
spring
大模型(LargeModel)指的是拥有庞大参数量的机器学习模型。由于具有更多的参数,大模型能够更好地拟合复杂的数据和模式,从而提供更准确的预测和更好的性能。大模型的参数量通常远远超过常规模型,可以达到数百万甚至数十亿个参数。这些参数通常通过深度神经网络(DeepNeuralNetwork)来表示,包括多个隐藏层和大量的神经元。大模型的训练需要大量的计算资源和数据。通常,它们需要在多个GPU或TP
- 基于深度学习的极端天气预测全解析与实战指南:基于MetNet 模型
AI_DL_CODE
深度学习人工智能MetNet天气预测python
摘要:本文全面解析了基于深度学习的极端天气预测,重点介绍了MetNet模型。首先,文章阐述了极端天气预测的重要性和传统天气预报的局限性。接着,详细介绍了MetNet模型的基本架构、特点以及与其他气象预测模型的对比。然后,通过实战案例展示了MetNet模型在极端降雨天气预测中的应用,包括数据准备、模型搭建与训练、模型评估与预测。最后,文章总结了MetNet模型的优势与挑战,并展望了深度学习在气象领域
- 深度解析:Python与TensorFlow在日平均气温预测中的应用——LSTM神经网络实战
AI_DL_CODE
python神经网络tensorflowLSTM气温预测RNN
文章目录1.引言1.1研究背景与意义1.2研究目标与问题定义2.概念解析2.1Python语言简介2.2TensorFlow框架概述2.3LSTM神经网络原理3.原理详解3.1时间序列分析基础3.1.1时间序列的组成3.1.2时间序列分析方法3.2LSTM在时间序列分析中的应用3.2.1LSTM的优势3.2.2LSTM的结构3.3日平均气温预测的数学模型3.3.1ARIMA模型3.3.2LSTM模
- 国自然青年项目|基于多模态影像组学的乳腺癌分子分型预测研究|基金申请·25-01-20
罗小罗同学
基金申请医学人工智能人工智能国自然
小罗碎碎念今天和大家分享一份国自然青年项目,项目执行期为2021-2023年,直接费用为24万。项目聚焦乳腺癌分子分型预测,综合运用多模态组学数据、影像组学技术和深度学习技术。研究内容包括跨模态医学图像分割、多模态特征提取与融合、模型设计与系统研发。通过提出一系列创新算法,如基于类别中心原型对齐器的图像分割算法、基于自注意力机制与生成对抗网络的聚类算法等,实现了对乳腺癌分子分型的高精度预测,并开发
- 文献综述相关ChatGPT提示词分享
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能数据分析AIGC信息可视化数据挖掘prompt
文献综述ChatGPT可以帮助提高文献综述的有效性和全面性。ChatGPT可以高效搜索和审查与宝子们课题研究相关的文献资料来源。一些给力的插件工具还可以帮助您总结复杂的研究论文并提取信息以更快更好地消化信息。合理的运用ChatGPT和GPTs可以提高文献综述的清晰度和质量,使其更加全面和有洞察力。文献综述提示词*131.在[人工智能相关]领域中,主要发现有哪些?2.在[人工智能相关]领域中,引用次
- 大模型的RAG微调与Agent:提升智能代理的效率与效果
WeeJot
人工智能人工智能
目录编辑引言RAG模型概述检索阶段生成阶段RAG模型的微调数据集选择损失函数设计微调策略超参数调整RAG模型在智能代理中的应用客户服务信息检索内容创作决策支持:结论引言在人工智能的快速发展中,大型预训练模型(LLMs)已经成为推动技术进步的关键力量。这些模型通过在海量数据上的预训练,掌握了丰富的语言知识和模式识别能力,从而在多种自然语言处理任务上展现出卓越的性能。然而,预训练模型的通用性也意味着它
- 深度学习乐园智能零售柜商品识别
Java先进事迹
深度学习零售人工智能
1.项目简介本项目专注于智能零售柜商品识别,是为第六届信也科技杯图像算法大赛设计的方案。其核心目标是利用深度学习技术,实现对顾客选购商品的精准识别和自动化结算。当商品被放置在指定区域时,系统应自动检测并识别每件商品,生成购物清单并计算总价格,提升零售柜的自动化与便利性。此类智能系统在不需要售货员的情况下即可进行商品识别和结算,相较于传统的硬件分隔、重量判断、顾客行为监测、或射频识别技术,这种方法不
- YOLOv8改进,YOLOv8检测头融合DiverseBranchBlock,并添加小目标检测层(四头检测),适合目标检测、分割等
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉深度学习
摘要一种卷积神经网络(ConvNet)的通用构建模块,以在不增加推理时间成本的情况下提高性能。该模块被命名为多样分支块(DiverseBranchBlock,DBB),通过结合不同尺度和复杂度的多样分支来丰富特征空间,包括卷积序列、多尺度卷积和平均池化,从而增强单个卷积的表示能力。在训练后,DBB可以等效地转换为一个单独的卷积层以进行部署。与新型ConvNet架构的进步不同,DBB在保持宏观架构的
- YOLOv10改进,YOLOv10改进主干网络为GhostNetV3(2024年华为的轻量化架构,全网首发),助力涨点
挂科边缘
YOLOv10改进YOLO计算机视觉目标检测人工智能python深度学习
摘要GhostNetV3是由华为诺亚方舟实验室的团队发布的,于2024年4月发布。摘要:紧凑型神经网络专为边缘设备上的应用设计,具备更快的推理速度,但性能相对适中。然而,紧凑型模型的训练策略目前借鉴自传统模型,这忽略了它们在模型容量上的差异,可能阻碍紧凑型模型的性能提升。在本文中,通过系统地研究不同训练成分的影响,我们介绍了一种用于紧凑型模型的强大训练策略。我们发现,适当的重参数化和知识蒸馏设计对
- 2024年AI浪潮:基础设施重构、模型演进与挑战并存
前端
2024年,人工智能领域呈现出蓬勃发展的景象,投资持续增长、基础设施发生变革,技术应用加速落地。各大科技公司和初创企业纷纷涌入,试图在这一充满机遇的领域分一杯羹。本文将深入探讨2024年AI发展的三大核心趋势:AI基础设施的重构、模型发展的新趋势以及AI发展带来的挑战,并重点关注企业如何从AI投资中获得回报,以及AI智能体技术的巨大潜力。选择合适的AI代码生成器将成为企业提升效率的关键。AI基础设
- AI生成前端页面:解放前端开发,拥抱AI时代的高效
前端
在数字时代,效率是企业和个人的核心竞争力。而对于前端开发人员来说,重复性工作和繁琐的代码编写常常成为效率提升的瓶颈。幸运的是,随着人工智能技术的飞速发展,一个新的时代已经到来——AI代码生成器(例如ScriptEcho)的出现,正以前所未有的方式改变着前端开发的格局。本文将探讨人工智能在日常应用中的广泛影响,并着重介绍如何利用AI技术,例如ScriptEcho,来提升前端开发效率,从而更好地应对当
- 「AI 中国」榜单揭晓,OpenBayes贝式计算入选「大模型最具潜力创业企业 TOP 10」
日前,「AI中国」机器之心2024年度评选正式揭晓,OpenBayes贝式计算有幸入选「大模型最具潜力创业企业TOP10」。作为专业的人工智能媒体与产业服务平台,机器之心于2017年发布了AI榜单「SyncedMachineIntelligenceAwards」,在随后的时间里,伴随AI的跨越式发展,机器之心的年度评选也逐渐成为了产业风向标之一,覆盖的领域、范围更加广泛,维度更加细化。机器之心20
- 高效员工培训:AI赋能企业发展新纪元
前端
在当今竞争激烈的商业环境中,员工是企业最宝贵的资产。高效的员工培训不仅能提升员工技能,提高工作效率,更能增强企业核心竞争力,推动企业持续发展。然而,传统的员工培训模式往往存在效率低下、成本高昂、缺乏互动性等诸多问题。例如,传统的线下培训需要耗费大量时间和资源,难以满足员工个性化学习需求,培训效果评估也缺乏客观数据支撑。面对这些挑战,人工智能(AI)技术的应用为企业员工培训带来了革命性的变革,为构建
- 【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码)
YOLO大师
YOLO论文阅读
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例介绍摘要在嵌入式设备上部署卷积神经网络(CNNs)由于有限的内存和计算资源而变得困难。特征图中的冗余是那些成功的CNNs的一个重要特性,但在神经架构设计中很少被研究。本文提出了一种新颖的Ghost模块,
- 探索未来视频创作:Tune-A-Video项目深度解析
刘通双Elsie
探索未来视频创作:Tune-A-Video项目深度解析Tune-A-Video[ICCV2023]Tune-A-Video:One-ShotTuningofImageDiffusionModelsforText-to-VideoGeneration项目地址:https://gitcode.com/gh_mirrors/tu/Tune-A-Video在数字艺术与人工智能的交汇点上,Tune-A-Vi
- 021:为什么是卷积呢?
董董灿是个攻城狮
计算机视觉保姆级教程人工智能计算机视觉CNN
本文为合集收录,欢迎查看合集/专栏链接进行全部合集的系统学习。合集完整版请查看这里。卷积算法非常重要,但是为什么是卷积呢?在进一步学习之前,先看一看神经网络(或者叫一个AI模型)是如何完成一张图片的推理的。你肯定听说过阿尔法狗大战柯洁的故事,当时新闻一出,不知大家什么反应,反正我是被震撼到了:AI模型竟然学到了那么多的棋谱,而且人类在AI的面前毫无还手可言。但是,你有没有想过一个问题:阿尔法狗学会
- 在PyTorch框架上训练ImageNet时,Dataloader加载速度慢怎么解决?
cda2024
pytorch人工智能python
在深度学习领域,PyTorch因其灵活性和易用性而受到广泛欢迎。然而,在实际应用中,特别是在处理大规模数据集如ImageNet时,Dataloader的加载速度往往成为瓶颈。本文将深入探讨这一问题,并提供多种解决方案,帮助你在PyTorch框架上高效地训练ImageNet。1.问题背景ImageNet是一个包含超过1400万张图像的大规模数据集,被广泛用于图像分类任务的研究。在PyTorch中,D
- 对于编程零基础,第一个语言是 Python 的人有什么建议?
cda2024
python开发语言
在当今数字化时代,编程已成为一项必备技能。无论你是想成为一名专业的软件开发人员,还是希望在数据分析、人工智能等领域有所建树,掌握一门编程语言都是至关重要的第一步。对于许多初学者来说,Python是一个理想的选择。它不仅语法简洁易懂,而且拥有强大的社区支持和丰富的库资源。那么,对于编程零基础且选择Python作为第一门语言的人,有哪些实用的建议呢?1.建立正确的学习心态1.1持之以恒学习编程并不是一
- OpenAI进军实体机器人:GPT赋能的智能未来
前端
近年来,人工智能技术飞速发展,深刻地改变着我们的生活。而OpenAI作为人工智能领域的领军者,其最新动作更是引人注目:进军实体机器人领域!这不仅标志着人工智能技术应用场景的重大拓展,也预示着未来智能机器人时代的加速到来。本文将深入探讨OpenAI的实体机器人战略,分析其背后的深层逻辑,并展望其未来发展趋势与挑战。OpenAI的战略布局:从AI模型到实体机器人OpenAI在人工智能领域已取得了令人瞩
- Python从0到100(七十三):Python OpenCV-OpenCV实现手势虚拟拖拽
是Dream呀
pythonopencv开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 国产海光CPU平台兼容性指南-基础软件分册-20231013(附各系统下载链接)
技术瘾君子1573
服务器&存储服务器兼容列表海光CPU云计算大数据操作系统
目录声明一、操作系统二、虚拟化和云2.1虚拟化和云2.2虚拟机上的操作系统2.2.1VMwarevSphere上的虚拟机操作系统2.2.2KVM上的虚拟机操作系统2.2.3WindowsHyper-V上的虚拟机操作系统2.2.4VirtualBox上的虚拟机操作系统三、分布式存储四、数据库五、中间件六、大数据七、平台组件7.1云平台7.2大数据平台7.3人工智能平台7.4科学与工程计算平台八、其它
- 企业如何打造高效智能问答系统?一文详解架构与实现!
功城师
大语言模型自然语言处理LLM人工智能智能问答RAGAgent
随着人工智能技术的不断发展,智能问答系统成为越来越多企业提升客户服务、知识管理与内部沟通的关键工具。今天我们将深入解析一套智能问答系统的设计思路与技术架构,帮助大家更好地理解如何利用这一系统在实际场景中高效运作。一、智能问答系统的整体架构这套智能问答系统分为前台、AI服务和后台三个核心部分,每个部分承担着不同的职责,分别负责用户交互、问题处理与数据支持。通过这种模块化的设计,整个系统的工作流程得以
- ACNet:深度学习中的自适应卷积网络新星
郎轶诺
ACNet:深度学习中的自适应卷积网络新星项目地址:https://gitcode.com/gh_mirrors/ac/ACNet在深度学习领域,卷积神经网络(CNN)一直是图像处理和计算机视觉任务的核心技术。然而,传统的固定大小的卷积核无法灵活适应不同区域的信息密度。针对这一问题,ACNet(AdaptiveConvolutionNetwork)项目应运而生,它引入了一种新型的自适应卷积层,旨在
- 与机器学习的邂逅--自适应神经网络结构的深度解析
想成为高手499
机器学习与人工智能机器学习神经网络人工智能
引言随着人工智能的发展,神经网络已成为许多应用领域的重要工具。自适应神经网络(AdaptiveNeuralNetworks,ANN)因其出色的学习能力和灵活性,逐渐成为研究的热点。本文将详细探讨自适应神经网络的基本概念、工作原理、关键技术、C++实现示例及其应用案例,最后展望未来的发展趋势。自适应神经网络的基本概念什么是自适应神经网络?自适应神经网络是一种能够根据输入数据的变化和环境的动态特性自动
- 自适应神经网络架构:原理解析与代码示例
chian-ocean
机器学习神经网络人工智能深度学习
个人主页:chian-ocean文章专栏自适应神经网络结构:深入探讨与代码实现1.引言随着深度学习的不断发展,传统神经网络模型在处理复杂任务时的局限性逐渐显现。固定的网络结构和参数对于动态变化的环境和多样化的数据往往难以适应,导致了过拟合或欠拟合的问题。自适应神经网络(AdaptiveNeuralNetworks,ANN)为此提供了一种新的解决方案,它可以根据数据特征和训练情况自动调整网络结构,从
- 深度解析智能问答系统:如何打造精准、高效的AI对话架构?
和老莫一起学AI
人工智能架构自然语言处理产品经理语言模型学习ai
在人工智能的飞速发展中,智能问答系统(QA系统)逐渐成为了企业内部管理、客户服务、搜索引擎等多个领域中的关键技术。今天,我们将深入探讨一个基于大模型、自然语言处理、知识检索的智能问答系统的架构,详细介绍其技术原理、流程以及未来应用前景。一、系统整体概览在这个智能问答系统中,整个流程可以大致划分为两大部分:前端问答生成与后端离线数据处理。前端部分是用户交互的核心,通过用户的输入、关键词提取、检索和问
- PostgreSQL - pgvector 插件构建向量数据库并进行相似度查询
花千树-010
RAG数据库postgresqlAI编程
在现代的机器学习和人工智能应用中,向量相似度检索是一个非常重要的技术,尤其是在文本、图像或其他类型的嵌入向量的操作中。本文将介绍如何在PostgreSQL中安装pgvector插件,用于存储和检索向量数据,并展示如何通过Python脚本向数据库插入向量并执行相似度查询。一、安装PostgreSQL并配置pgvector插件1.安装PostgreSQL首先,确保你已经安装了PostgreSQL。可以
- 全面解析NVIDIA显卡:从入门级到旗舰级显卡详解
花千树-010
大模型人工智能算法智能电视
在选择显卡时,了解不同显卡的性能和适用场景是非常重要的。无论你是预算有限的入门用户,还是追求极致性能的游戏玩家,亦或是专业的内容创作者和深度学习研究人员,NVIDIA都有适合你的显卡。本篇博文将详细列举NVIDIA显卡的各项配置,从低到高逐一整理,并给出适用的使用场景。入门级显卡NVIDIAGeForceGT1030CUDA核心数:384基础频率:1227MHz加速频率:1468MHz显存:2GB
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分