Dynamic Programming | Set 3 (Longest Increasing Subsequence)

Dynamic Programming | Set 1 (Overlapping Subproblems Property)Dynamic Programming | Set 2 (Optimal Substructure Property) 中我们已经讨论了重叠子问题和最优子结构性质,现在我们来看一个可以使用动态规划来解决的问题:最长上升子序列(Longest Increasing Subsequence(LIS))。

最长上升子序列问题,致力于在一个给定的序列中找到一个最长的子序列,该子序列中的元素按升序排列。例如,序列{10, 22, 9, 33, 21, 50, 41, 60, 80}的最长上升子序列的长度为6,最长上升子序列为{10, 22, 33, 50, 60, 80}。

Optimal Substructure:

假设arr[0..n-1]为输入数组,L(i)是以下标i结束的数组的最长上升子序列的长度,满足arr[i]是LIS的一部分,即arr[i]是该LIS中的最后一个元素,那么L(i)可以递归的表示为:

L(i) = { 1 + Max ( L(j) ) } where j < i and arr[j] < arr[i] and if there is no such j then L(i) = 1

要获得一个给定数组LIS的长度,我们需要返回 max(L(i)) where 0 < i < n

因此,LIS问题具有最优子结构性质,因此该问题可以使用子问题的方法来求解。

Overlapping Subproblems:

以下是LIS问题的一个简单递归版本程序。

/* A Naive recursive implementation of LIS problem */

#include<stdio.h>

#include<stdlib.h>

 

/* To make use of recursive calls, this function must return two things:

   1) Length of LIS ending with element arr[n-1]. We use max_ending_here 

      for this purpose

   2) Overall maximum as the LIS may end with an element before arr[n-1] 

      max_ref is used this purpose.

The value of LIS of full array of size n is stored in *max_ref which is our final result

*/

int _lis( int arr[], int n, int *max_ref)

{

    /* Base case */

    if(n == 1)

        return 1;

 

    int res, max_ending_here = 1; // length of LIS ending with arr[n-1]

 

    /* Recursively get all LIS ending with arr[0], arr[1] ... ar[n-2]. If 

       arr[i-1] is smaller than arr[n-1], and max ending with arr[n-1] needs

       to be updated, then update it */

    for(int i = 1; i < n; i++)

    {

        res = _lis(arr, i, max_ref);

        if (arr[i-1] < arr[n-1] && res + 1 > max_ending_here)

            max_ending_here = res + 1;

    }

 

    // Compare max_ending_here with the overall max. And update the

    // overall max if needed

    if (*max_ref < max_ending_here)

       *max_ref = max_ending_here;

 

    // Return length of LIS ending with arr[n-1]

    return max_ending_here;

}

 

// The wrapper function for _lis()

int lis(int arr[], int n)

{

    // The max variable holds the result

    int max = 1;

 

    // The function _lis() stores its result in max

    _lis( arr, n, &max );

 

    // returns max

    return max;

}

 

/* Driver program to test above function */

int main()

{

    int arr[] = { 10, 22, 9, 33, 21, 50, 41, 60 };

    int n = sizeof(arr)/sizeof(arr[0]);

    printf("Length of LIS is %d\n",  lis( arr, n ));

    getchar();

    return 0;

}

考虑以上实现,如下是当数组大小为4时的递归树,lis(n)为以n为最后一个元素时,数组的LIS的长度。

image

不难发现,其中有子问题被重复计算。因此,该问题具有重叠子结构性质,通过Memoization或者Tabulation,可以防止子问题的重复计算。如下,是LIS问题的tabluated实现。

/* Dynamic Programming implementation of LIS problem */

#include<stdio.h>

#include<stdlib.h>

 

/* lis() returns the length of the longest increasing subsequence in 

    arr[] of size n */

int lis( int arr[], int n )

{

   int *lis, i, j, max = 0;

   lis = (int*) malloc ( sizeof( int ) * n );

 

   /* Initialize LIS values for all indexes */

   for ( i = 0; i < n; i++ )

      lis[i] = 1;

    

   /* Compute optimized LIS values in bottom up manner */

   for ( i = 1; i < n; i++ )

      for ( j = 0; j < i; j++ )

         if ( arr[i] > arr[j] && lis[i] < lis[j] + 1)

            lis[i] = lis[j] + 1;

    

   /* Pick maximum of all LIS values */

   for ( i = 0; i < n; i++ )

      if ( max < lis[i] )

         max = lis[i];

 

   /* Free memory to avoid memory leak */

   free( lis );

 

   return max;

}

 

/* Driver program to test above function */

int main()

{

  int arr[] = { 10, 22, 9, 33, 21, 50, 41, 60 };

  int n = sizeof(arr)/sizeof(arr[0]);

  printf("Length of LIS is %d\n", lis( arr, n ) );

 

  getchar();

  return 0;

}

注意,以上的动态规划解法需要的时间复杂度为O(n^2),实际上LIS问题有O(nLogn)的解法(see this)。在这边,我们并没有讨论O(nLogn)的解法,此处,只是用这篇文章来作为动态规划的一个简单例子。

你可能感兴趣的:(Dynamic Programming | Set 3 (Longest Increasing Subsequence))