谷歌云计算技术基础架构,谷歌人工智能算法框架

谷歌云计算技术基础架构,谷歌人工智能算法框架_第1张图片

1、如何选择深度学习框架 TensorFlow/Torch/Mxnet/Theano

深度学习目前的应用领域很多,主要是计算机视觉和自然语言处理,以及各种预测等。对于计算机视觉,可以做图像分类、目标检测、视频中的目标检测等,对于自然语言处理,可以做语音识别、语音合成、对话系统、机器翻译、文章摘要、情感分析等。
对于刚入行深度学习,想从事人工智能工业应用和研发的小白来说,选择一个适合自己的深度学习框架显得尤为重要。那么在选择深度学习框架的时候,要注意哪些内容呢?
通常我们在选择框架时要考虑易用性、性能、社区、平台支持等问题。初学者应该考虑容易上手的框架,偏工业应用的开发者可以考虑使用稳定性高、性能好的框架,偏研究性的开发者,一般选择易用而且有领先的模型基线的框架。
目前这个阶段,TensorFlow因为背靠谷歌公司这座靠山,再加上拥有庞大的开发者群体,而且采用了称为“可执行的伪代码”的Python语言,成为最受欢迎的主流框架之一。一些外围的第三方库(如Keras、TFLearn)也基于它实现了很多成果,Keras还得到TensorFlow官方的支持。TensorFlow支持的上层语言也在逐渐扩大,对于不同工程背景的人转入的门槛正在降低。
因此,对于刚入行深度学习的小白,TensorFlow是一个非常好的选择,掌握TensorFlow对以后的求职发展很有帮助。
为了让大家更快地掌握深度学习技术,成为人工智能领域高端人才,中公教育联合中科院自动化研究所专家,强力推出人工智能《深度学习》,让大家学有所成、真正掌握机器学习模型以及算法背后的原理。

谷歌人工智能写作项目:小发猫

2、哪一个神经网络框架的运算速度最快

看应用谷歌神经网络计算框架。 有的处理快, 有的跑样本快。。 不同的模型也有不同的性能。我推荐tensorflow吧, gpu兼容性好, 开源, 案例多。 我们学校目前在用呢

3、如何用PyTorch实现递归神经网络

从 Siri 到谷歌翻译,深度神经网络已经在机器理解自然语言方面取得了巨大突破。这些模型大多数将语言视为单调的单词或字符序列,并使用一种称为循环神经网络(recurrent neural network/RNN)的模型来处理该序列。但是许多语言学家认为语言最好被理解为具有树形结构的层次化词组,一种被称为递归神经网络(recursive neural network)的深度学习模型考虑到了这种结构,这方面已经有大量的研究。虽然这些模型非常难以实现且效率很低,但是一个全新的深度学习框架 PyTorch 能使它们和其它复杂的自然语言处理模型变得更加容易。
虽然递归神经网络很好地显示了 PyTorch 的灵活性,但它也广泛支持其它的各种深度学习框架,特别的是,它能够对计算机视觉(computer vision)计算提供强大的支撑。PyTorch 是 Facebook AI Research 和其它几个实验室的开发人员的成果,该框架结合了 Torch7 高效灵活的 GPU 加速后端库与直观的 Python 前端,它的特点是快速成形、代码可读和支持最广泛的深度学习模型。
开始 SPINN
链接中的文章()详细介绍了一个递归神经网络的 PyTorch 实现,它具有一个循环跟踪器(recurrent tracker)和 TreeLSTM 节点,也称为 SPINN——SPINN 是深度学习模型用于自然语言处理的一个例子,它很难通过许多流行的框架构建。这里的模型实现部分运用了批处理(batch),所以它可以利用 GPU 加速,使得运行速度明显快于不使用批处理的版本。
SPINN 的意思是堆栈增强的解析器-解释器神经网络(Stack-augmented Parser-Interpreter Neural Network),由 Bowman 等人于 2016 年作为解决自然语言推理任务的一种方法引入,该论文中使用了斯坦福大学的 SNLI 数据集。
该任务是将语句对分为三类:假设语句 1 是一幅看不见的图像的准确标题,那么语句 2(a)肯定(b)可能还是(c)绝对不是一个准确的标题?(这些类分别被称为蕴含(entailment)、中立(neutral)和矛盾(contradiction))。例如,假设一句话是「两只狗正跑过一片场地」,蕴含可能会使这个语句对变成「户外的动物」,中立可能会使这个语句对变成「一些小狗正在跑并试图抓住一根棍子」,矛盾能会使这个语句对变成「宠物正坐在沙发上」。
特别地,研究 SPINN 的初始目标是在确定语句的关系之前将每个句子编码(encoding)成固定长度的向量表示(也有其它方式,例

你可能感兴趣的:(php,人工智能,云计算,算法,cnn)