2023年亚太数学建模大赛--A题(水果采摘机器人的图像识别功能)

中国是世界上最大的苹果生产国,年产量约为 3500 万吨。同时,中国也是世界上最大的苹果出口国,世界上每两个苹果中就有一个出口到国。世界上每两个苹果中就有一个来自中国,中国出口的苹果占全球出口量的六分之一以上。来自中国。中国提出了 "一带一路 "倡议(BRI),这是构建全球社会、共享未来的重要支柱。

中国提出了 "一带一路 "倡议(BRI),这是建设具有共同未来的全球社会的重要支柱。得益于这一倡议,越南、孟加拉国、菲律宾印度尼西亚等沿线国家已成为中国苹果的主要出口目的地。

苹果采摘主要依靠人工采摘。苹果成熟时,苹果产区在几天内就需要大量采摘工人。

苹果产区几天内就需要大量采摘工人。但大多数当地但当地农民大多在自家果园种植苹果。此外,农业工人的老龄化和年轻人外出务工的现象也导致了苹果采摘季节的劳动力短缺。为解决这一问题,中国从 2011 年左右开始研究可采摘苹果的机器人,并在今年为解决这一问题,中国从 2011 年左右开始研究可采摘苹果的机器人,并取得了重大展。

然而,由于果园环境不同于可控实验环境,各种苹果采摘机器人在世界范围内的推广和应用还不够理想。由于果园环境不同于受控实验环境,各种苹果采摘机器人在全球范围内的推广和应用还不够理想。

在复杂和非结构化的果园环境中,大多数现有机器人无法能准确识别 "树叶遮挡"、"树枝遮挡"、"果实遮挡 "和 "混合遮挡 "等障碍物。"混合遮挡 "等障碍物。如果不根据实际场景进行精确判断就直接摘苹果 如果不根据实际情况做出精确判断就直接采摘苹果,很可能会损坏果实,甚至对采摘手和机械臂造成伤害。这将对采摘效率和果实质量产生不利影响 果的质量,导致更大的损失。此外 此外,不同收获水果的识别和分类也非常重要,如分类程序、加工、包装和运输、 加工、包装和运输的程序。然而,许多水果的颜色、形状和大小与苹果十分相似、 然而,许多水果的颜色、形状和大小与苹果十分相似,这给采后识别苹果带来了很大困难。

本竞赛旨在通过分析和提取标注苹果图像的特征,建立一个识别率高、速度快、精度高的苹果图像识别模型。通过分析和提取标注水果图像的特征,建立一个识别率高、速度快、准确率高的苹果图像识别模型 对图像进行数据分析,如自动计算图像中苹果的数量、位置、成熟度和质量。自动计算图像中苹果的数量、位置、成熟度以及估算质量。具体任务如下 :

问题 1:计数苹果

根据附件 1 中提供的可收获苹果的图像数据集,提取图像特征,建立数学模型,计算每幅图像中的苹果数量,并绘制附件 1 中所有苹果分布的直方图。

其中附件 1下面该文件夹包含200张可收割苹果的图像,每张图像的大小为270*180像素。:

问题 2:估计苹果的位置
     根据附录 1 中提供的可收获苹果的图像数据集,在每幅图像中确定苹果的
以图像左下角为坐标原点,确定每幅图像中苹果的位置。
    并绘制附件 1 中所有苹果几何坐标的二维散点图。
    并画出附件 1 中所有苹果几何坐标的二维散点图。

问题 3:估计苹果的成熟度
    根据附录 1 中提供的可收获苹果的图像数据集,建立一个建立数学模型,计算每幅图像中苹果的成熟度,并绘制所有苹果的成熟度分布直方图。
附件 1 中所有苹果的成熟度分布。

问题 4:估算苹果的质量
    根据附录 1 中提供的可收获苹果的图像数据集,计算每幅图像中苹果的二维面积,图像左下角为 坐标原点,计算每幅图像中苹果的二维面积,估算苹果的质量,并绘制附件 1 中所有苹果质量分布的直方图。并绘制附件 1 中所有苹果的质量分布直方图。

问题 5:苹果的识别
   根据附录 2 中提供的收获水果图像数据集,提取图像特征,训练苹果识别模型,并绘制苹果质量分布直方图特征,训练苹果识别模型,识别附录 3 中的苹果,并绘制苹果 ID 编号的分布直方图。并绘制附件 3 中所有苹果图像 ID 编号的分布直方图。

你可能感兴趣的:(机器人,建模,数学建模,opencv)