前一篇文章介绍了objc4 779.1的调试环境搭建,这里以alloc
、init
、new
方法为例看一下详细的执行过程。
alloc流程图
-
LYPerson alloc 流程
-
NSObject alloc 流程
上图是一步步断点调试而来,调试方法请参考源码探索方法。我们简单分析一下,不管是NSObjec
还是LYPerson
,alloc
都不是首先调用的方法,甚至NSObjec
连alloc
都没有调用。
为什么首先调用的是objc_alloc
方法?查找llvm
源码得知,在编译时进行了优化。当shouldUseRuntimeFunctionsForAlloc
返回true
时,对alloc
进行优化。
- 搜索
shouldUseRuntimeFunctionsForAlloc
- 搜索
EmitObjCAlloc(
可以看到这两个方法把alloc
就转换成了objc_alloc
1、objc_alloc
objc_alloc(Class cls)
{
return callAlloc(cls, true/*checkNil*/, false/*allocWithZone*/);
}
直接调用callAlloc
方法。
2、callAlloc
static ALWAYS_INLINE id callAlloc(Class cls, bool checkNil, bool allocWithZone=false)
{
#if __OBJC2__
if (slowpath(checkNil && !cls)) return nil;
if (fastpath(!cls->ISA()->hasCustomAWZ())) {
return _objc_rootAllocWithZone(cls, nil);
}
#endif
// No shortcuts available.
if (allocWithZone) {//传入参数为false
return ((id(*)(id, SEL, struct _NSZone *))objc_msgSend)(cls, @selector(allocWithZone:), nil);
}
return ((id(*)(id, SEL))objc_msgSend)(cls, @selector(alloc));
}
探索发现LYPerson
走到最后一步,调用alloc
方法;NSObjec
调用的是_objc_rootAllocWithZone
。hasCustomAWZ()
判断当前类是否有默认的allocWithZone方法。
bool hasCustomAWZ() const {
return !cache.getBit(FAST_CACHE_HAS_DEFAULT_AWZ);
}
bool getBit(uint16_t flags) const {
return _flags & flags;
}
#define fastpath(x) (__builtin_expect(bool(x), 1))
#define slowpath(x) (__builtin_expect(bool(x), 0))
简述一下fastpath(x)
和slowpath(x)
,这两个方法的返回值是一样的。x 值为正返回为真,反之返回为假。引入这两个宏目的是增加条件分支预测的准确性,cpu 会提前装载后面的指令,遇到条件转移指令时会提前预测并装载某个分支的指令。slowpath 表示你可以确认该条件是极少发生的,相反 fastpath 表示该条件多数情况下会发生。编译器会产生相应的代码来优化 cpu 执行效率。
参考:
gcc 编译器 , __builtin_expect() 研究
iOS性能优化系列之__builtin_expect分支预测优化
3、alloc
+ (id)alloc {
return _objc_rootAlloc(self);
}
4、_objc_rootAlloc
id _objc_rootAlloc(Class cls)
{
return callAlloc(cls, false/*checkNil*/, true/*allocWithZone*/);
}
直接调用callAlloc
,但是这次callAlloc
中调用的是_objc_rootAllocWithZone
5、 _objc_rootAllocWithZone
id _objc_rootAllocWithZone(Class cls, malloc_zone_t *zone __unused)
{
// allocWithZone under __OBJC2__ ignores the zone parameter
return _class_createInstanceFromZone(cls, 0, nil,
OBJECT_CONSTRUCT_CALL_BADALLOC);
}
直接调用_class_createInstanceFromZone
。
6、_class_createInstanceFromZone
static ALWAYS_INLINE id
_class_createInstanceFromZone(Class cls, size_t extraBytes, void *zone,
int construct_flags = OBJECT_CONSTRUCT_NONE,
bool cxxConstruct = true,
size_t *outAllocatedSize = nil)
{
ASSERT(cls->isRealized());
// Read class's info bits all at once for performance
bool hasCxxCtor = cxxConstruct && cls->hasCxxCtor();
bool hasCxxDtor = cls->hasCxxDtor();
bool fast = cls->canAllocNonpointer();
size_t size;
size = cls->instanceSize(extraBytes);
if (outAllocatedSize) *outAllocatedSize = size;
id obj;
if (zone) {
obj = (id)malloc_zone_calloc((malloc_zone_t *)zone, 1, size);
} else {
obj = (id)calloc(1, size);
}
if (slowpath(!obj)) {
if (construct_flags & OBJECT_CONSTRUCT_CALL_BADALLOC) {
return _objc_callBadAllocHandler(cls);
}
return nil;
}
if (!zone && fast) {
obj->initInstanceIsa(cls, hasCxxDtor);
} else {
// Use raw pointer isa on the assumption that they might be
// doing something weird with the zone or RR.
obj->initIsa(cls);
}
if (fastpath(!hasCxxCtor)) {
return obj;
}
construct_flags |= OBJECT_CONSTRUCT_FREE_ONFAILURE;
return object_cxxConstructFromClass(obj, cls, construct_flags);
}
大致分为以下几个步骤:
-
instanceSize
计算出类的所需内存 -
calloc
开辟内存 -
initInstanceIsa
关联Isa指针
1.instanceSize
#ifdef __LP64__
# define WORD_SHIFT 3UL
# define WORD_MASK 7UL
# define WORD_BITS 64
#else
# define WORD_SHIFT 2UL
# define WORD_MASK 3UL
# define WORD_BITS 32
#endif
/*
*字节对齐
*LP64机器下8字节对齐
*其他4字节对齐
*/
static inline uint32_t word_align(uint32_t x) {
return (x + WORD_MASK) & ~WORD_MASK;
}
/*
*实例大小
*实例大小instanceSize会存在ro中
*/
uint32_t unalignedInstanceSize() const {
ASSERT(isRealized());
return data()->ro->instanceSize;
}
/*
*返回字节对齐后的内存大小
*/
uint32_t alignedInstanceSize() const {
return word_align(unalignedInstanceSize());
}
size_t instanceSize(size_t extraBytes) const {
if (fastpath(cache.hasFastInstanceSize(extraBytes))) {
return cache.fastInstanceSize(extraBytes);
}
size_t size = alignedInstanceSize() + extraBytes;
// CF requires all objects be at least 16 bytes.
if (size < 16) size = 16;//当内存小于16字节时,返回16字节
return size;
}
然而现在objc源码普遍走的是fastInstanceSize
函数,快速计算内存大小。而当前版本内存对齐是16字节对齐,苹果早期是8字节对齐。
static inline size_t align16(size_t x) {
return (x + size_t(15)) & ~size_t(15);
}
size_t fastInstanceSize(size_t extra) const
{
ASSERT(hasFastInstanceSize(extra));
if (__builtin_constant_p(extra) && extra == 0) {
return _flags & FAST_CACHE_ALLOC_MASK16;
} else {
size_t size = _flags & FAST_CACHE_ALLOC_MASK;
// remove the FAST_CACHE_ALLOC_DELTA16 that was added
// by setFastInstanceSize
return align16(size + extra - FAST_CACHE_ALLOC_DELTA16);
}
}
获取内存大小后,直接调用calloc
函数为对象分配内存空间
- calloc
The calloc( ) function contiguously allocates enough space for count objects that are size bytes of memory each and returns a pointer to the allocated memory. The allocated memory is filled with bytes of value zero. // calloc()函数连续地为count对象分配足够的空间,这些对象是内存的大小字节,并返回一个指向所分配内存的指针。分配的内存充满了值为零的字节。
申请完内存,还需要初始化Isa指针。
- initIsa
inline void objc_object::initInstanceIsa(Class cls, bool hasCxxDtor)
{
ASSERT(!cls->instancesRequireRawIsa());
ASSERT(hasCxxDtor == cls->hasCxxDtor());
initIsa(cls, true, hasCxxDtor);
}
inline void objc_object::initIsa(Class cls)
{
initIsa(cls, false, false);
}
initIsa
和initInstanceIsa
最后调用的都是initIsa
方法,就是参数不同而已
inline void
objc_object::initIsa(Class cls, bool nonpointer, bool hasCxxDtor)
{
ASSERT(!isTaggedPointer());
if (!nonpointer) {
isa = isa_t((uintptr_t)cls);
} else {
ASSERT(!DisableNonpointerIsa);
ASSERT(!cls->instancesRequireRawIsa());
isa_t newisa(0);
#if SUPPORT_INDEXED_ISA
ASSERT(cls->classArrayIndex() > 0);
newisa.bits = ISA_INDEX_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
newisa.has_cxx_dtor = hasCxxDtor;
newisa.indexcls = (uintptr_t)cls->classArrayIndex();
#else
newisa.bits = ISA_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
newisa.has_cxx_dtor = hasCxxDtor;
newisa.shiftcls = (uintptr_t)cls >> 3;
#endif
// This write must be performed in a single store in some cases
// (for example when realizing a class because other threads
// may simultaneously try to use the class).
// fixme use atomics here to guarantee single-store and to
// guarantee memory order w.r.t. the class index table
// ...but not too atomic because we don't want to hurt instantiation
isa = newisa;
}
}
初始化的过程就是对isa_t
结构体初始化的过程。
到此alloc
流程就走完了,主要就是计算并分配内存,关联Isa。
init分析
- (id)init {
return _objc_rootInit(self);
}
id _objc_rootInit(id obj)
{
// In practice, it will be hard to rely on this function.
// Many classes do not properly chain -init calls.
return obj;
}
init方法的仅仅就是返回了当前对象而已。
new分析
// Calls [cls new]
id objc_opt_new(Class cls)
{
#if __OBJC2__
if (fastpath(cls && !cls->ISA()->hasCustomCore())) {
return [callAlloc(cls, false/*checkNil*/, true/*allocWithZone*/) init];
}
#endif
return ((id(*)(id, SEL))objc_msgSend)(cls, @selector(new));
}
+ (id)new {
return [callAlloc(self, false/*checkNil*/) init];
}
new
类方法里同样调用callAlloc
和init
方法,相当于[[cls alloc] init].
最后我们来看一道面试题
结果打印如下:
你们答对了吗?
对象的内存实际上是在alloc方法里面开辟的,故p1、p2、p3在内存中的地址一致,只是指针地址不同。