参考博客:https://www.yuque.com/huangzhongqing/pcl/yfrd0w
曲面重建技术在逆向工程、数据可视化、机器视觉、虚拟现实、医疗技术等领域中得到了广泛的应用 。根据重建曲面和数据点云之间的关系,可将曲面重建分为两大类:插值法和逼近法。插值法得到的重建曲面完全通过原始数据点,而逼近法是用分片线性曲面或其他形式的曲面来逼近原始数据点,从而使得得到的重建曲面是原始点集的一个逼近曲面。
#include //采样一致性模型相关类头文件
#include
#include
#include
#include
#include
#include //滤波相关类头文件
#include //基于采样一致性分割类定义的头文件
#include //创建凹多边形类定义头文件
int
main (int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>),
cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>),
cloud_projected (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PCDReader reader;
reader.read ("../table_scene_mug_stereo_textured.pcd", *cloud);
// 建立过滤器消除杂散的NaN
pcl::PassThrough<pcl::PointXYZ> pass;
pass.setInputCloud (cloud); //设置输入点云
pass.setFilterFieldName ("z"); //设置分割字段为z坐标
pass.setFilterLimits (0, 1.1); //设置分割阀值为(0, 1.1)
pass.filter (*cloud_filtered);
std::cerr << "PointCloud after filtering has: "
<< cloud_filtered->points.size () << " data points." << std::endl;
// 分割
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers (new pcl::PointIndices); //inliers存储分割后的点云
// 创建分割对象
pcl::SACSegmentation<pcl::PointXYZ> seg;
// 设置优化系数,该参数为可选参数
seg.setOptimizeCoefficients (true);
// Mandatory
seg.setModelType (pcl::SACMODEL_PLANE);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setDistanceThreshold (0.01);
seg.setInputCloud (cloud_filtered);
seg.segment (*inliers, *coefficients);
std::cerr << "PointCloud after segmentation has: "
<< inliers->indices.size () << " inliers." << std::endl;
// Project the model inliers点云投影滤波模型
pcl::ProjectInliers<pcl::PointXYZ> proj;//点云投影滤波模型
proj.setModelType (pcl::SACMODEL_PLANE); //设置投影模型
proj.setIndices (inliers);
proj.setInputCloud (cloud_filtered);
proj.setModelCoefficients (coefficients); //将估计得到的平面coefficients参数设置为投影平面模型系数
proj.filter (*cloud_projected); //得到投影后的点云
std::cerr << "PointCloud after projection has: "
<< cloud_projected->points.size () << " data points." << std::endl;
// 存储提取多边形上的点云
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_hull (new pcl::PointCloud<pcl::PointXYZ>);
pcl::ConcaveHull<pcl::PointXYZ> chull; //创建多边形提取对象
chull.setInputCloud (cloud_projected); //设置输入点云为提取后点云
chull.setAlpha (0.1);
chull.reconstruct (*cloud_hull); //创建提取创建凹多边形
std::cerr << "Concave hull has: " << cloud_hull->points.size ()
<< " data points." << std::endl;
pcl::PCDWriter writer;
writer.write ("../table_scene_mug_stereo_textured_hull.pcd", *cloud_hull, false);
return (0);
}
参考博客:https://blog.csdn.net/zhan_zhan1/article/details/104942568
#include
#include
#include
#include
#include //贪婪投影三角化算法
int main (int argc, char** argv)
{
// 将一个XYZ点类型的PCD文件打开并存储到对象中
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PCLPointCloud2 cloud_blob;
pcl::io::loadPCDFile ("../bun0.pcd", cloud_blob);
pcl::fromPCLPointCloud2 (cloud_blob, *cloud);
//* the data should be available in cloud
// Normal estimation*
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> n; //法线估计对象
pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal>); //存储估计的法线
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>); //定义kd树指针
tree->setInputCloud (cloud); //用cloud构建tree对象
n.setInputCloud (cloud);
n.setSearchMethod (tree);
n.setKSearch (20);
n.compute (*normals); //估计法线存储到其中
//* normals should not contain the point normals + surface curvatures
// Concatenate the XYZ and normal fields*
pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_normals (new pcl::PointCloud<pcl::PointNormal>);
pcl::concatenateFields (*cloud, *normals, *cloud_with_normals); //连接字段
//* cloud_with_normals = cloud + normals
//定义搜索树对象
pcl::search::KdTree<pcl::PointNormal>::Ptr tree2 (new pcl::search::KdTree<pcl::PointNormal>);
tree2->setInputCloud (cloud_with_normals); //点云构建搜索树
// Initialize objects
pcl::GreedyProjectionTriangulation<pcl::PointNormal> gp3; //定义三角化对象
pcl::PolygonMesh triangles; //存储最终三角化的网络模型
// Set the maximum distance between connected points (maximum edge length)
gp3.setSearchRadius (0.025); //设置连接点之间的最大距离,(即是三角形最大边长)
// 设置各参数值
gp3.setMu (2.5); //设置被样本点搜索其近邻点的最远距离为2.5,为了使用点云密度的变化
gp3.setMaximumNearestNeighbors (100); //设置样本点可搜索的邻域个数
gp3.setMaximumSurfaceAngle(M_PI/4); // 设置某点法线方向偏离样本点法线的最大角度45
gp3.setMinimumAngle(M_PI/18); // 设置三角化后得到的三角形内角的最小的角度为10
gp3.setMaximumAngle(2*M_PI/3); // 设置三角化后得到的三角形内角的最大角度为120
gp3.setNormalConsistency(false); //设置该参数保证法线朝向一致
// Get result
gp3.setInputCloud (cloud_with_normals); //设置输入点云为有向点云
gp3.setSearchMethod (tree2); //设置搜索方式
gp3.reconstruct (triangles); //重建提取三角化
// 附加顶点信息
std::vector<int> parts = gp3.getPartIDs();
std::vector<int> states = gp3.getPointStates();
// Finish
return (0);
}
#include
#include
#include
#include
#include // fatal error: pcl/surface/on_nurbs/fitting_surface_tdm.h: 没有那个文件或目录
#include
#include
typedef pcl::PointXYZ Point;
void
PointCloud2Vector3d (pcl::PointCloud<Point>::Ptr cloud, pcl::on_nurbs::vector_vec3d &data);
void
visualizeCurve (ON_NurbsCurve &curve,
ON_NurbsSurface &surface,
pcl::visualization::PCLVisualizer &viewer);
int main (int argc, char *argv[])
{
std::string pcd_file, file_3dm;
if (argc < 3)
{
printf ("\nUsage: pcl_example_nurbs_fitting_surface pcd-in-file 3dm-out-file\n\n" );
exit (0);
}
pcd_file = argv[1];
file_3dm = argv[2];
pcl::visualization::PCLVisualizer viewer ("B-spline surface fitting");
viewer.setSize (800, 600);
// ############################################################################
// load point cloud
printf (" loading %s\n", pcd_file.c_str ());
pcl::PointCloud<Point>::Ptr cloud (new pcl::PointCloud<Point>);
pcl::PCLPointCloud2 cloud2;
pcl::on_nurbs::NurbsDataSurface data;
if (pcl::io::loadPCDFile (pcd_file, cloud2) == -1)
throw std::runtime_error (" PCD file not found.");
fromPCLPointCloud2 (cloud2, *cloud);
PointCloud2Vector3d (cloud, data.interior);
pcl::visualization::PointCloudColorHandlerCustom<Point> handler (cloud, 0, 255, 0);
viewer.addPointCloud<Point> (cloud, handler, "cloud_cylinder");
printf (" %lu points in data set\n", cloud->size ());
// ############################################################################
// fit B-spline surface
// parameters
unsigned order (3);
unsigned refinement (5);
unsigned iterations (10);
unsigned mesh_resolution (256);
pcl::on_nurbs::FittingSurface::Parameter params;
params.interior_smoothness = 0.2;
params.interior_weight = 1.0;
params.boundary_smoothness = 0.2;
params.boundary_weight = 0.0;
// initialize
printf (" surface fitting ...\n");
ON_NurbsSurface nurbs = pcl::on_nurbs::FittingSurface::initNurbsPCABoundingBox (order, &data);
pcl::on_nurbs::FittingSurface fit (&data, nurbs);
// fit.setQuiet (false); // enable/disable debug output
// mesh for visualization
pcl::PolygonMesh mesh;
pcl::PointCloud<pcl::PointXYZ>::Ptr mesh_cloud (new pcl::PointCloud<pcl::PointXYZ>);
std::vector<pcl::Vertices> mesh_vertices;
std::string mesh_id = "mesh_nurbs";
pcl::on_nurbs::Triangulation::convertSurface2PolygonMesh (fit.m_nurbs, mesh, mesh_resolution);
viewer.addPolygonMesh (mesh, mesh_id);
// surface refinement
for (unsigned i = 0; i < refinement; i++)
{
fit.refine (0);
fit.refine (1);
fit.assemble (params);
fit.solve ();
pcl::on_nurbs::Triangulation::convertSurface2Vertices (fit.m_nurbs, mesh_cloud, mesh_vertices, mesh_resolution);
viewer.updatePolygonMesh<pcl::PointXYZ> (mesh_cloud, mesh_vertices, mesh_id);
viewer.spinOnce ();
}
// surface fitting with final refinement level
for (unsigned i = 0; i < iterations; i++)
{
fit.assemble (params);
fit.solve ();
pcl::on_nurbs::Triangulation::convertSurface2Vertices (fit.m_nurbs, mesh_cloud, mesh_vertices, mesh_resolution);
viewer.updatePolygonMesh<pcl::PointXYZ> (mesh_cloud, mesh_vertices, mesh_id);
viewer.spinOnce ();
}
// ############################################################################
// fit B-spline curve
// parameters
pcl::on_nurbs::FittingCurve2dAPDM::FitParameter curve_params;
curve_params.addCPsAccuracy = 5e-2;
curve_params.addCPsIteration = 3;
curve_params.maxCPs = 200;
curve_params.accuracy = 1e-3;
curve_params.iterations = 100;
curve_params.param.closest_point_resolution = 0;
curve_params.param.closest_point_weight = 1.0;
curve_params.param.closest_point_sigma2 = 0.1;
curve_params.param.interior_sigma2 = 0.00001;
curve_params.param.smooth_concavity = 1.0;
curve_params.param.smoothness = 1.0;
// initialisation (circular)
printf (" curve fitting ...\n");
pcl::on_nurbs::NurbsDataCurve2d curve_data;
curve_data.interior = data.interior_param;
curve_data.interior_weight_function.push_back (true);
ON_NurbsCurve curve_nurbs = pcl::on_nurbs::FittingCurve2dAPDM::initNurbsCurve2D (order, curve_data.interior);
// curve fitting
pcl::on_nurbs::FittingCurve2dASDM curve_fit (&curve_data, curve_nurbs);
// curve_fit.setQuiet (false); // enable/disable debug output
curve_fit.fitting (curve_params);
visualizeCurve (curve_fit.m_nurbs, fit.m_nurbs, viewer);
// ############################################################################
// triangulation of trimmed surface
printf (" triangulate trimmed surface ...\n");
viewer.removePolygonMesh (mesh_id);
pcl::on_nurbs::Triangulation::convertTrimmedSurface2PolygonMesh (fit.m_nurbs, curve_fit.m_nurbs, mesh,
mesh_resolution);
viewer.addPolygonMesh (mesh, mesh_id);
// save trimmed B-spline surface
if ( fit.m_nurbs.IsValid() )
{
ONX_Model model;
ONX_Model_Object& surf = model.m_object_table.AppendNew();
surf.m_object = new ON_NurbsSurface(fit.m_nurbs);
surf.m_bDeleteObject = true;
surf.m_attributes.m_layer_index = 1;
surf.m_attributes.m_name = "surface";
ONX_Model_Object& curv = model.m_object_table.AppendNew();
curv.m_object = new ON_NurbsCurve(curve_fit.m_nurbs);
curv.m_bDeleteObject = true;
curv.m_attributes.m_layer_index = 2;
curv.m_attributes.m_name = "trimming curve";
model.Write(file_3dm.c_str());
printf(" model saved: %s\n", file_3dm.c_str());
}
printf (" ... done.\n");
viewer.spin ();
return 0;
}
void
PointCloud2Vector3d (pcl::PointCloud<Point>::Ptr cloud, pcl::on_nurbs::vector_vec3d &data)
{
for (unsigned i = 0; i < cloud->size (); i++)
{
Point &p = cloud->at (i);
if (!std::isnan (p.x) && !std::isnan (p.y) && !std::isnan (p.z))
data.push_back (Eigen::Vector3d (p.x, p.y, p.z));
}
}
void
visualizeCurve (ON_NurbsCurve &curve, ON_NurbsSurface &surface, pcl::visualization::PCLVisualizer &viewer)
{
pcl::PointCloud<pcl::PointXYZRGB>::Ptr curve_cloud (new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::on_nurbs::Triangulation::convertCurve2PointCloud (curve, surface, curve_cloud, 4);
for (std::size_t i = 0; i < curve_cloud->size () - 1; i++)
{
pcl::PointXYZRGB &p1 = curve_cloud->at (i);
pcl::PointXYZRGB &p2 = curve_cloud->at (i + 1);
std::ostringstream os;
os << "line" << i;
viewer.removeShape (os.str ());
viewer.addLine<pcl::PointXYZRGB> (p1, p2, 1.0, 0.0, 0.0, os.str ());
}
pcl::PointCloud<pcl::PointXYZRGB>::Ptr curve_cps (new pcl::PointCloud<pcl::PointXYZRGB>);
for (int i = 0; i < curve.CVCount (); i++)
{
ON_3dPoint p1;
curve.GetCV (i, p1);
double pnt[3];
surface.Evaluate (p1.x, p1.y, 0, 3, pnt);
pcl::PointXYZRGB p2;
p2.x = float (pnt[0]);
p2.y = float (pnt[1]);
p2.z = float (pnt[2]);
p2.r = 255;
p2.g = 0;
p2.b = 0;
curve_cps->push_back (p2);
}
viewer.removePointCloud ("cloud_cps");
viewer.addPointCloud (curve_cps, "cloud_cps");
}