First, let’s talk a bit about the brain. If you’ve studied cog psych, you’ve likely heard about about how neurons process information. There’s way too much to cover in one blog post, so we’ll focus on these four specific use cases:
首先,让我们谈谈大脑。 如果您学习过齿轮心理学,那么您可能已经听说过神经元如何处理信息。 一篇博客文章中涉及的内容太多了,因此我们将重点介绍这四个特定的用例:
There’s a lot of faucets to the question of ‘where’. How does the brain orient you in space? In daylight, in the dark? How do you know where you are the day after an earthquake, when all major landmarks are gone?
关于“哪里”的问题有很多方面。 大脑如何将您定位在太空中? 在白天,在黑暗中? 您怎么知道地震发生后第二天所有主要地标都消失了?
There’s no overarching theory in science (yet), because there’s a lot of different things the hippocampus does now—the brain has a lot of backup systems. Effectively, there’s a lot of neurons doing similar things, but in a different way.
科学上还没有最重要的理论(因为),因为海马现在有很多不同的事情—大脑有很多备用系统。 实际上,有很多神经元在做类似的事情,但是方式不同。
Grid cells work as you walk around; they are quite regular and fire at intervals. The information they gather is fed to the place cells, which we’ll talk about in a minute. Grid cells are arranged in a hexagonal format—hence the name—and can work in complete darkness: this means they’re getting physical feedback data as well as visual. They fire at such regular intervals there’s a question about whether they’re also used to measure time. More on that in a bit.
网格单元在您四处走动时起作用。 他们很规律,有时会开火。 他们收集的信息被馈送到位置单元,我们将在稍后讨论。 网格单元以六边形格式(因此得名)排列,并且可以在完全黑暗的环境中工作:这意味着它们将获得物理反馈数据和视觉效果。 它们以这样的固定间隔触发,这是关于是否也用于测量时间的一个问题。 一点点更多。
Place cells are more dedicated; they remember the information from the place cells and hold a series of cognitive maps in your head of particular spaces. This is how you recognize an area: your office, your house, your city. They can re-fire and re-map themselves to update information, too.
放置单元格更加专用; 他们会记住来自位置细胞的信息,并在您特定空间的头部保留一系列认知图。 这就是您识别区域的方式:您的办公室,房子,城市。 他们也可以重新触发并重新映射自己以更新信息。
Interestingly, place fields are usually not affected by large sensory changes, like removing a big landmark. We’re not sure why, but it does makes sense: if a tree falls down or there is a big earthquake or landslide, you should still be able to recognize and remap the space. This is where triangulation might come in handy: it’s an additional processing tool.
有趣的是,位置场通常不受大型感官变化的影响 ,例如移除大地标。 我们不确定为什么,但这确实是有道理的:如果一棵树倒下或发生大地震或山体滑坡,您仍然应该能够识别并重新映射空间。 这是三角剖分可能会派上用场的地方:这是一个附加的处理工具。
There are also dedicated head direction cells, neurons that fire when the head is facing a certain direction. This helps you maintain a sense of direction anytime, but especially in the dark or in unfamiliar environments—or, say, maybe when you’re wearing a big old plastic-and-glass mask. They can be confused eventually: if the environment repeatedly changes a lot, or if you wander in the dark too far.
还有专门的头部方向细胞 ,即当头部朝向某个方向时会触发的神经元。 这可以帮助您随时保持方向感,特别是在黑暗或不熟悉的环境中,或者说,也许当您戴着旧的塑料玻璃罩时。 他们最终可能会感到困惑:如果环境反复变化很大,或者您在黑暗中徘徊太远。
So much for where we are in space. How about time, the other big locator?
对于我们在太空中的位置来说是如此重要。 时间如何,另一个重要的定位器?
To be clear, we’re not talking circadian rhythms; those are kind of instinctual or chemical time-based patterns, but they can be altered pretty easily by adjusting natural time indicators—sunrise, when it gets dark, temperature, and so on.
明确地说, 我们不是在谈论昼夜节律 ; 这些都是基于本能或化学时间的模式,但是可以通过调整自然时间指示器(日出,黑暗,温度等)来轻松更改它们。
But how the brain processes time, moving in the fourth dimension, is even more of an open puzzle than space. It’s just difficult to test, in part because you can stand still in space, but not in time. It’s simply a quirk of living in four dimensions: time is genuinely the invariable variable.
但是,大脑如何处理时间(在第四维中移动),比空间更像是一个开放的难题。 很难进行测试,部分原因是您可以在太空中静止不动,但不能及时移动。 这只是生活在四个维度上的一个怪癖:时间确实是不变的变量。
Initially scientists thought that the entire hippocampus had random cells devoted to time recording, and there’s new research indicating that grid cells can also possibly be used to record time. For example, scientists put rats on a treadmill—no place data—and noticed the grid cells still generated consistent patterns tied to the length of the session. Fifteen-second sessions got a specific pattern: 30-second sessions got a different pattern.
最初,科学家们认为整个海马都有随机记录时间的细胞,并且有新的研究表明网格细胞也可以用来记录时间 。 例如,科学家将老鼠放在跑步机上(没有位置数据),并注意到网格单元仍然生成与运动时间长短相关的一致模式。 15秒的会话具有特定的模式:30秒的会话具有不同的模式。
But the big question here, then, is, are those patterns really sensing a specific time period, or are they just firing in a pattern that is being played out in time? This is the problem with doing research about time.
但是,这里最大的问题是,这些模式是否真的在特定时间段内感知,或者它们只是按照及时播放的模式触发 ? 这是进行时间研究的问题。
But we know that humans are quite good at keeping certain kinds of time. We’re good at timing our movements—to catch a door, or a yellow light, for example. Dancers and athletes and musicians all have great timing, great rhythm. But each of those examples is also a spatial example, heavily tied to our physical bodies? We’re good at gauging how far can we go in X period, how fast can we go, and our velocity.
但是我们知道人类非常擅长保持某些时间。 我们擅长安排运动时间,例如赶上一扇门或黄灯。 舞者,运动员和音乐家都有很好的时机和节奏。 但是,这些例子中的每一个也是与我们的身体紧密相连的空间例子吗? 我们擅长衡量X周期能走多远,能走多快以及速度。
It’s a quirk of many languages that when asked how far away something is, you can answer either in time or distance: things are two hours away, or 600 miles, a five-days’ walk, and so on. But if you’re just sitting somewhere for several hours, particularly if you’re distracted, you’ll likely lose track of time.
这是多种语言的怪癖,当被问及事物有多远时,您可以按时间或距离回答:事物相距两个小时或600英里,五天的步行路程,依此类推。 但是,如果您只是坐在一个地方几个小时,特别是如果您分心的话,您很可能会失去时间。
Still, we do remember time passing, and we remember things in order, in a sequence. So maybe time cells, whether they are grid cells or other types of neurons, are also just cataloging and indexing those experiences. Interestingly, since grid cells are heavily involved in place, and maybe involved in time, there’s a theory that cognitive maps might also organize memories by location—so you go back to your hometown, and you remember events at that place.
尽管如此,我们确实记得时间的流逝,并且我们按顺序记住事情。 因此,也许时间单元,无论是网格单元格还是其他类型的神经元,都只是在对这些经历进行分类和索引。 有趣的是,由于网格单元大量地参与到地方中,并且可能涉及到时间, 因此有一种理论认为认知地图也可以按位置组织记忆 ,因此您回到家乡,并记住那个地方的事件。
So—effectively, we’re pretty iffy on time. But if there’s one thing we do know about it, it’s pain and how to avoid it.
因此,实际上,我们很准时。 但是,如果我们确实了解一件事,那就是痛苦以及如何避免它。
Pain information takes different paths to get from nerve endings to the cortex; the way pain receptors work is a nice demonstration of how humans have evolved. There’s a few different types of pain nerve fibers, most importantly A-delta and C. A-deltas are faster and newer. They are the reason that you pull your hand away from a hot stove before you’ve realized what has happened. C fibers are slower, but more common—over 70% of pain nerves are C fibers—and they can respond to more types of pain. For example, A-delta fibers don’t feel chemical pain, only C, which is why it takes a second for you to realize how hot spicy food really is.
疼痛信息通过不同的途径从神经末梢到达皮层。 疼痛感受器的工作方式很好地展示了人类如何进化。 疼痛神经纤维有几种不同类型,最重要的是A-δ和C。A-δ更快,更新。 这就是您在意识到发生了什么之前将手从火炉上移开的原因。 C纤维较慢,但更常见-超过70%的疼痛神经是C纤维-它们可以对更多类型的疼痛做出React。 例如,A-delta纤维不会感到化学疼痛,而只会感觉到C,这就是为什么您花一秒钟的时间才能意识到真正的辛辣食物是多么辛辣。
So the brain gets the information from the nerve fibers, and then has to figure out how to react to the information it’s been given, based on a number of factors: am I somewhere unknown or dangerous? Have I been injured here before? Can I literally see the bones sticking out from under my skin?
因此,大脑会从神经纤维中获取信息,然后必须根据多种因素,弄清楚如何对所提供的信息做出React:我在某个未知的地方还是危险的地方? 我以前在这里受伤过吗? 我能从字面上看到骨头从我的皮肤下面伸出吗?
If the injury doesn’t seem too bad, we’ll do things like rub it, shake it off, walk a bit—standard ways to calm down the nervous system. The brain can actually talk back to the nervous system, asking for more information or less, turning up sensitivity or turning it down, depending on what’s going on. If you’re really, really concentrating, say on a battlefield or playing sports, your brain can make the distraction threshold for nerve signals extremely high.
如果伤害看起来还不错,我们将做一些事情,例如擦,甩开,走一下-这是使神经系统平静的标准方法。 大脑实际上可以与神经系统对话,要求更多或更少的信息,根据发生的情况提高灵敏度或降低灵敏度。 如果您真的非常专心,例如在战场上或进行体育运动,大脑会使神经信号的分心阈值变得非常高。
There’s other types of pain, visceral pain and deep somatic pain, that are hard to identify: stomachaches, deep sprains, aches from chronic disease. If you’re anything like us, the brain’s best advice is usually ‘lie down and take a nap till you feel better’.
还有其他类型的疼痛,内脏疼痛和深部躯体疼痛难以识别:胃痛,深部扭伤,慢性疾病引起的疼痛。 如果您像我们一样,大脑的最佳建议通常是“躺下来小睡,直到您感觉好些”。
Your brain is also naturally primed to remember bad, creepy, or terrifying things; to create stronger neural connections when they happen, and to create a longer-lasting bond. If you’ve been in a life-threatening situation in a specific place and had to go back to that place, it was probably fairly intense for you in any case, but if you were injured, it was likely more intense.
您的大脑也自然地会记住坏的,令人毛骨悚然的或可怕的事物。 当它们发生时建立更强的神经联系,并建立更持久的联系。 如果您在某个特定的地方处于危及生命的状况,并且不得不回到那个地方,那么在任何情况下,这对您来说可能都非常紧张,但是如果您受伤了,情况可能会更加紧张。
If you’re not in obvious danger, just in pain, the brain checks to make sure everything’s okay and deals with it. But the brain does not instinctively know what’s really happening in the body. There’s a couple reasons for this, but one big one is that pain signals hit different parts of your brain at different points, making some types of pain sources especially difficult to find.
如果您没有明显的危险,只是处于痛苦中,大脑会检查以确保一切正常,并进行处理。 但是大脑并不能本能地知道人体中到底发生了什么。 造成这种情况的原因有两个,但其中一个重要原因是,疼痛信号会在不同位置击中大脑的不同部位,从而使某些类型的疼痛源特别难以发现。
This has some really interesting implications for VR. If you’ve played Asunder: Earthbound, you know that the beginning plays on these visual cues: as the game begins, you’re in prison with a visible body, and your avatar’s hands look terrible: long nails, grey skin. Instantly, the part of your brain concerned with your well-being gets very concerned that you are sick, and it take a few minutes to shake it off.
这对VR而言确实具有一些有趣的含义。 如果您曾经玩过《地下狂飙:地下狂飙》,那么您就会知道这些开始是根据这些视觉线索进行的:在游戏开始时,您被囚禁在一个可见的身体中,并且化身的手看起来很糟糕:长指甲,皮肤灰白。 立刻,与健康有关的大脑部分就非常担心自己生病了,需要几分钟才能摆脱它。
You can do similar tricks in real life just by using mirrors or blocking yourself or using plastic dummy hands, primed to feel like ‘your’ hand. Check out this video from the BBC show Horizons in which the hosts try this trick out on unsuspecting people—then hit the hand with a hammer.
您可以通过使用镜子,遮挡自己或使用假想成塑料手的塑料假人来在现实生活中做类似的技巧。 观看BBC节目“地平线”中的这段视频,主持人在其中尝试了这种技巧,以防万勿怀疑的人,然后用锤子敲打手。
It’s worth noting the experiment works well even in broad daylight, on a beach, using a fairly cheap looking hand. If that work so well, imagine how immersive that could get in VR. Of course this is the basis for a lot of VR physical therapy happening now—there’s a lot of companies focusing on this now. The brain’s neuroplasticity really comes in handy.
值得一提的是,即使在白天,在海滩上,使用一只手也很便宜的手,该实验仍能很好地进行。 如果效果如此之好,请想象一下在VR中可能会身临其境。 当然,这是目前许多VR物理疗法发生的基础-现在有很多公司专注于此。 大脑的神经可塑性真的派上用场了。
So that’s the basics of pain. Pain is so straightforwardly bad most of the time, though, that it’s obvious we need to remember it. Deep lizard brain working there. But how does the brain, in general, remember, you know, what to remember?
这就是痛苦的基础。 但是,在大多数情况下,疼痛直截了当,因此很明显,我们需要记住它。 深蜥蜴的大脑在那里工作。 但是,大脑通常如何记住,要记住什么?
Pretty simply: surprise, recency, repetition, and—somewhat related to both surprise and recency–the first and last. Additionally, our brain prioritizes things it wants to remember: if you really need to keep something beyond working memory, you’ll instinctively repeat, repeat, repeat.
很简单:惊喜,新近度,重复性,以及(与惊喜和新近度有关的东西)第一个和最后一个。 此外,我们的大脑会优先考虑要记住的事情:如果您确实需要将某些东西保留在工作记忆之外,那么您会本能地重复,重复,重复。
For example, those grid cells we’ve talked about earlier? Rats will play through a pattern when they’re learning it, and then their brain plays through it again after they go to sleep. The theory is that the repetition effectively transfer the pattern to long-term storage. So things like space maps are given a priority, which makes sense; it’s always handy to know where you are.
例如,那些我们之前讨论过的网格单元? 老鼠在学习时会通过一种模式进行游戏,然后在睡觉后大脑会再次通过该模式进行游戏。 从理论上讲,重复有效地将模式转移到了长期存储中。 因此,将诸如空间图之类的东西赋予优先级,这是有道理的。 知道自己在哪里总是很方便的。
On the flip side, there’s a lot of data we get that we learn to ignore at a young age. For example, infants learning to talk, by the age of 10 months or so, already start to lose sensitivity to unimportant differences in speech in their native tongue. Same thing with different octave types: the Arab tone system has 24 divisions, using quarter-notes, while the Western has 12 and uses nothing smaller than a half-tone. If you’re used to Western tone scales, you might not be able to even recognize quarter tones; they just sound flat or sharp.
另一方面,我们获得了许多数据,这些数据使我们在年轻时就学会了忽略。 例如,在10个月左右的年龄里学习说话的婴儿已经开始失去对母语中不重要的语音差异的敏感性。 相同的东西具有不同的八度音阶类型:阿拉伯音调系统有24个格,使用四分音符,而西方音调系统有12个格,并且使用的音调都不小于半音。 如果您习惯了西方的音阶,您甚至可能无法识别四分之一音。 他们只是听起来平坦或尖锐。
Different types of memories are stored differently. We’ve already addressed spatial memory above, but episodic and semantic memory are the other two big categories. Episodic memory stores life events, both things that happened to you, or around you. These generally have a time marker.
不同类型的存储器以不同的方式存储。 上面我们已经讨论了空间记忆,但情节记忆和语义记忆是另外两个主要类别。 情景记忆存储生活事件,包括您或您周围发生的事情。 这些通常都有一个时间标记。
Semantic memory is about trivia and knowledge—meanings, concepts, etc. How you remember all of these types of memories has much to do with how you processed them in the first place. Scary things or things that happen during heightened times tend to be remembered fast and hard, but they aren’t usually very pleasant—in fact some memories, like the ones PTSD survivors live with, are too terrible to be recalled. But in general, for more benign things like taking a test, repetition does the trick: keep thinking about things, talking about them, writing them down, and reviewing them.
语义记忆是关于琐事和知识(含义,概念等)的。您如何记住所有这些类型的记忆与您一开始如何处理它们有关。 可怕的事物或在高峰时期发生的事物往往会被快速而艰难地记住,但它们通常并不令人愉悦-实际上,有些记忆(如PTSD幸存者所生活的记忆)太可怕了,难以回忆。 但是总的来说,对于诸如考试之类的更有益的事情,重复就是成功的诀窍:不断思考,谈论,写下,回顾。
You also tend to remember information more accurately if you’re back at the place you learned it. This has some fun implications for VR: imagine studying in the same jungle landscape you later take your test. Recall on exams should go through the roof; but will it be considered cheating?
如果您回到了学习的地方,您也倾向于更准确地记住信息。 这对VR有一些有趣的含义:想象一下在相同的丛林景观中学习,之后再进行测试。 召回考试应该通过屋顶; 但是会被认为是作弊吗?
So that’s some basics of how the brain processes certain types of information. In the next article we cover current research and apps using these types of brain quirks to improve humanity.
这就是大脑如何处理某些类型的信息的一些基础知识。 在下一篇文章中,我们将介绍使用这些类型的大脑怪癖来提高人类水平的最新研究和应用程序。
Timoni West & Dio Gonzalez work at Unity Labs; Dio is a tech lead, and Timoni is a principal designer. As part of their work in VR, they’ve done some research into how the brain processes types of information, and how this can affect how the brain processes environments in VR. There’s been quite a bit of prior research on the topic, too, so we’ll go over some interesting findings, and finally talk a bit about how perception quirks lead to interesting UX challenges in VR.
Timoni West和Dio Gonzalez在Unity Labs工作; Dio是技术主管,Timoni是首席设计师。 作为他们在VR中工作的一部分,他们已经对大脑如何处理信息类型以及如何影响大脑在VR中处理环境的方式进行了一些研究。 也有很多关于该主题的先前研究,因此我们将讨论一些有趣的发现,最后讨论一下感知怪癖如何导致VR中有趣的UX挑战。
翻译自: https://blogs.unity3d.com/2016/03/14/cognitive-implications-of-widespread-vr/