java项目改mavaen_SpringBoot操作ES进行各种高级查询

SpringBoot整合ES

创建SpringBoot项目,导入 ES 6.2.1 的 RestClient 依赖和 ES 依赖。在项目中直接引用 es-starter 的话会报容器初始化异常错误,导致项目无法启动。如果有读者解决了这个问题,欢迎留言交流

org.elasticsearch.client

elasticsearch-rest-high-level-client

${elasticsearch.version}

org.elasticsearch

elasticsearch

${elasticsearch.version}

为容器定义 RestClient 对象

/**

* 在Spring容器中定义 RestClient 对象

* @Author: keats_coder

* @Date: 2019/8/9

* @Version 1.0

* */

@Configuration

public class ESConfig {

@Value("${yunshangxue.elasticsearch.hostlist}")

private String hostlist; // 127.0.0.1:9200

@Bean // 高版本客户端

public RestHighLevelClient restHighLevelClient() {

// 解析 hostlist 配置信息。假如以后有多个,则需要用 , 分开

String[] split = hostlist.split(",");

// 创建 HttpHost 数组,其中存放es主机和端口的配置信息

HttpHost[] httpHostArray = new HttpHost[split.length];

for (int i = 0; i < split.length; i++) {

String item = split[i];

httpHostArray[i] = new HttpHost(item.split(":")[0], Integer.parseInt(item.split(":")[1]), "http");

}

// 创建RestHighLevelClient客户端

return new RestHighLevelClient(RestClient.builder(httpHostArray));

}

// 项目主要使用 RestHighLevelClient,对于低级的客户端暂时不用

@Bean

public RestClient restClient() {

// 解析hostlist配置信息

String[] split = hostlist.split(",");

// 创建HttpHost数组,其中存放es主机和端口的配置信息

HttpHost[] httpHostArray = new HttpHost[split.length];

for (int i = 0; i < split.length; i++) {

String item = split[i];

httpHostArray[i] = new HttpHost(item.split(":")[0], Integer.parseInt(item.split(":")[1]), "http");

}

return RestClient.builder(httpHostArray).build();

}

}

在 yml 文件中配置 eshost

yunshangxue:

elasticsearch:

hostlist: ${eshostlist:127.0.0.1:9200}

调用相关 API 执行操作

创建操作索引的对象

构建操作索引的请求

调用对象的相关API发送请求

获取响应消息

/**

* 删除索引库

*/

@Test

public void testDelIndex() throws IOException {

// 操作索引的对象

IndicesClient indices = client.indices();

// 删除索引的请求

DeleteIndexRequest deleteIndexRequest = new DeleteIndexRequest("ysx_course");

// 删除索引

DeleteIndexResponse response = indices.delete(deleteIndexRequest);

// 得到响应

boolean b = response.isAcknowledged();

System.out.println(b);

}

创建索引, 步骤和删除类似,需要注意的是删除的时候需要指定 ES 库分片的数量和副本的数量,并且在创建索引的时候可以将映射一起指定了。代码如下

public void testAddIndex() throws IOException {

// 操作索引的对象

IndicesClient indices = client.indices();

// 创建索引的请求

CreateIndexRequest request = new CreateIndexRequest("ysx_course");

request.settings(Settings.builder().put("number_of_shards", "1").put("number_of_replicas", "0"));

// 创建映射

request.mapping("doc", "{\n" +

" \"properties\": {\n" +

" \"description\": {\n" +

" \"type\": \"text\",\n" +

" \"analyzer\": \"ik_max_word\",\n" +

" \"search_analyzer\": \"ik_smart\"\n" +

" },\n" +

" \"name\": {\n" +

" \"type\": \"text\",\n" +

" \"analyzer\": \"ik_max_word\",\n" +

" \"search_analyzer\": \"ik_smart\"\n" +

" },\n" +

"\"pic\":{ \n" +

"\"type\":\"text\", \n" +

"\"index\":false \n" +

"}, \n" +

" \"price\": {\n" +

" \"type\": \"float\"\n" +

" },\n" +

" \"studymodel\": {\n" +

" \"type\": \"keyword\"\n" +

" },\n" +

" \"timestamp\": {\n" +

" \"type\": \"date\",\n" +

" \"format\": \"yyyy-MM‐dd HH:mm:ss||yyyy‐MM‐dd||epoch_millis\"\n" +

" }\n" +

" }\n" +

" }", XContentType.JSON);

// 执行创建操作

CreateIndexResponse response = indices.create(request);

// 得到响应

boolean b = response.isAcknowledged();

System.out.println(b);

}

Java API操作ES

准备数据环境

创建索引:ysx_course

创建映射:

PUT http://localhost:9200/ysx_course/doc/_mapping

{

"properties": {

"description": { // 课程描述

"type": "text", // String text 类型

"analyzer": "ik_max_word", // 存入的分词模式:细粒度

"search_analyzer": "ik_smart" // 查询的分词模式:粗粒度

},

"name": { // 课程名称

"type": "text",

"analyzer": "ik_max_word",

"search_analyzer": "ik_smart"

},

"pic":{ // 图片地址

"type":"text",

"index":false // 地址不用来搜索,因此不为它构建索引

},

"price": { // 价格

"type": "scaled_float", // 有比例浮点

"scaling_factor": 100 // 比例因子 100

},

"studymodel": {

"type": "keyword" // 不分词,全关键字匹配

},

"timestamp": {

"type": "date",

"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"

}

}

}

加入原始数据:

POST http://localhost:9200/ysx_course/doc/1

{

"name": "Bootstrap开发",

"description": "Bootstrap是由Twitter推出的一个前台页面开发框架,是一个非常流行的开发框架,此框架集成了多种页面效果。此开发框架包含了大量的CSS、JS程序代码,可以帮助开发者(尤其是不擅长页面开发的程序人员)轻松的实现一个不受浏览器限制的精美界面效果。",

"studymodel": "201002",

"price":38.6,

"timestamp":"2018-04-25 19:11:35",

"pic":"group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg"

}

DSL搜索

DSL(Domain Specific Language)是ES提出的基于json的搜索方式,在搜索时传入特定的json格式的数据来完成不

同的搜索需求。DSL比URI搜索方式功能强大,在项目中建议使用DSL方式来完成搜索。

查询全部

原本我们想要查询全部的话,需要使用 GET 请求发送 _search 命令,如今使用 DSL 方式搜索,可以使用 POST 请求,并在请求体中设置 JSON 字符串来构建查询条件

POST http://localhost:9200/ysx_course/doc/_search

请求体 JSON

{

"query": {

"match_all": {} // 查询全部

},

"_source" : ["name","studymodel"] // 查询结果包括 课程名 + 学习模式两个映射

}

具体的测试方法如下:过程比较繁琐,好在条理还比较清晰

// 搜索全部记录

@Test

public void testSearchAll() throws IOException, ParseException {

// 搜索请求对象

SearchRequest searchRequest = new SearchRequest("ysx_course");

// 指定类型

searchRequest.types("doc");

// 搜索源构建对象

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();

// 搜索方式

// matchAllQuery搜索全部

searchSourceBuilder.query(QueryBuilders.matchAllQuery());

// 设置源字段过虑,第一个参数结果集包括哪些字段,第二个参数表示结果集不包括哪些字段

searchSourceBuilder.fetchSource(new String[]{"name","studymodel","price","timestamp"},new String[]{});

// 向搜索请求对象中设置搜索源

searchRequest.source(searchSourceBuilder);

// 执行搜索,向ES发起http请求

SearchResponse searchResponse = client.search(searchRequest);

// 搜索结果

SearchHits hits = searchResponse.getHits();

// 匹配到的总记录数

long totalHits = hits.getTotalHits();

// 得到匹配度高的文档

SearchHit[] searchHits = hits.getHits();

// 日期格式化对象

SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

for(SearchHit hit:searchHits){

// 文档的主键

String id = hit.getId();

// 源文档内容

Map sourceAsMap = hit.getSourceAsMap();

String name = (String) sourceAsMap.get("name");

// 由于前边设置了源文档字段过虑,这时description是取不到的

String description = (String) sourceAsMap.get("description");

// 学习模式

String studymodel = (String) sourceAsMap.get("studymodel");

// 价格

Double price = (Double) sourceAsMap.get("price");

// 日期

Date timestamp = dateFormat.parse((String) sourceAsMap.get("timestamp"));

System.out.println(name);

System.out.println(studymodel);

System.out.println("你看不见我,看不见我~" + description);

System.out.println(price);

}

}

坑:red>

执行过程中遇到的问题:不能对这个值进行初始化,导致 Spring 容器无法初始化

Caused by: java.lang.IllegalArgumentException: Could not resolve placeholder 'yunshangxue.elasticsearch.hostlist' in value "${yunshangxue.elasticsearch.hostlist}"

通过检查 target 目录发现,生成的 target 文件包中没有将 yml 配置文件带过来... 仔细对比发现,我的项目竟然变成了一个不是 Maven 的项目。重新使用 IDEA 导入 Mavaen 工程之后便能正常运行了

分页查询

我们来 look 一下 ES 的分页查询参数:

{

// from 起始索引

// size 每页显示的条数

"from" : 0, "size" : 1,

"query": {

"match_all": {}

},

"_source" : ["name","studymodel"]

}

java项目改mavaen_SpringBoot操作ES进行各种高级查询_第1张图片

通过查询结果可以发现,我们设置了分页参数之后, hits.total 仍然是 3,表示它找到了 3 条数据,而按照分页规则,它只会返回一条数据,因此 hits.hits 里面只有一条数据。这也符合我们的业务规则,在查询前端页面显示总共的条数和当前的数据。

由此,我们就可以通过 Java API 来构建查询条件了:对上面查询全部的代码进行如下改造:

// 搜索源构建对象

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();

int page = 2; // 页码

int size = 1; // 每页显示的条数

int index = (page - 1) * size;

searchSourceBuilder.from(index);

searchSourceBuilder.size(1);

// 搜索方式

// matchAllQuery搜索全部

searchSourceBuilder.query(QueryBuilders.matchAllQuery());

精确查询 TermQuery

Term Query为精确查询,在搜索时会整体匹配关键字,不再将关键字分词

例如:

{

"query": {

"term": { // 查询的方式为 term 精确查询

"name": "spring" // 查询的字段为 name 关键字是 spring

}

},

"_source": [

"name",

"studymodel"

]

}

此时查询的结果是:

"hits": [

{

"_index": "ysx_course",

"_type": "doc",

"_id": "3",

"_score": 0.9331132,

"_source": {

"studymodel": "201001",

"name": "spring开发基础"

}

}

]

查询到了上面这条数据,因为 spring开发基础 分完词后是 spring 开发 基础 ,而查询关键字是 spring 不分词,这样当然可以匹配到这条记录,但是当我们修改关键字为 spring开发,按照往常的查询方法,也是可以查询到的。但是 term 不一样,它不会对关键字分词。结果可想而知是查询不到的

JavaAPI如下:

// 搜索方式

// termQuery 精确查询

searchSourceBuilder.query(QueryBuilders.termQuery("studymodel", "201002"));

根据 ID 查询:

根据 ID 精确查询和根据其他条件精确查询是一样的,不同的是 id 字段前面有一个下划线注意写上

searchSourceBuilder.query(QueryBuilders.termQuery("_id", "1"));

但是,当一次查询多个 ID 时,相应的 API 也应该改变,使用 termsQuery 而不是 termQuery。多了一个 s

全文检索 MatchQuery

MatchQuery 即全文检索,会对关键字进行分词后匹配词条。

query:搜索的关键字,对于英文关键字如果有多个单词则中间要用半角逗号分隔,而对于中文关键字中间可以用

逗号分隔也可以不用

operator:设置查询的结果取交集还是并集,并集用 or, 交集用 and

{

"query": {

"match": {

"description": {

"query": "spring开发",

"operator": "or"

}

}

}

}

有时,我们需要设定一个量化的表达方式,例如查询 spring开发基础,这三个词条。我们需求是至少匹配两个词条,这时 operator 属性就不能满足要求了,ES 还提供了另外一个属性:minimum_should_match 用一个百分数来设定应该有多少个词条满足要求。例如查询:

“spring开发框架”会被分为三个词:spring、开发、框架

设置"minimum_should_match": "80%"表示,三个词在文档的匹配占比为80%,即3*0.8=2.4,向下取整得2,表

示至少有两个词在文档中要匹配成功。

JavaAPI

通过 matchQuery.minimumShouldMatch 的方式来设置条件

// matchQuery全文检索

searchSourceBuilder.query(QueryBuilders.matchQuery("description", "Spring开发框架").minimumShouldMatch("70%"));

多字段联合搜索 MultiQuery

上面的 MatchQuery 有一个短板,假如用户输入了某关键字,我们在查找的时候并不知道他输入的是 name 还是 description,这时我们用什么都不合适,而 MultiQuery 的出现解决了这个问题,他可以通过 fields 属性来设置多个域联合查找:具体用法如下

{

"query": {

"multi_match": {

"query": "Spring开发",

"minimum_should_match": "70%",

"fields": ["name", "description"]

}

}

}

JavaAPI

searchSourceBuilder.query(QueryBuilders.multiMatchQuery("Spring开发框架", "name", "description").minimumShouldMatch("70%"));

提升 boost

在多域联合查询的时候,可以通过 boost 来设置某个域在计算得分时候的比重,比重越高的域当他符合条件时计算的得分越高,相应的该记录也更靠前。通过在 fields 中给相应的字段用 ^权重倍数来实现

"fields": ["name^10", "description"]

上面的代码表示给 name 字段提升十倍权重,查询到的结果:

{

"_index": "ysx_course",

"_type": "doc",

"_id": "3",

"_score": 13.802518, // 可以清楚的发现,得分竟然是 13 了

"_source": {

"name": "spring开发基础",

"description": "spring 在java领域非常流行,java程序员都在用。",

"studymodel": "201001",

"price": 88.6,

"timestamp": "2018-02-24 19:11:35",

"pic": "group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg"

}

},

而在 Java 中,仍然可以通过链式编程来实现

searchSourceBuilder.query(QueryBuilders.multiMatchQuery("Spring开发框架", "name", "description").field("name", 10)); // 设置 name 10倍权重

布尔查询 BoolQuery

如果我们既要对一些字段进行分词查询,同时要对另一些字段进行精确查询,就需要使用布尔查询来实现了。布尔查询对应于Lucene的BooleanQuery查询,实现将多个查询组合起来,有三个可选的参数:

must:文档必须匹配must所包括的查询条件,相当于 “AND”

should:文档应该匹配should所包括的查询条件其中的一个或多个,相当于 "OR"

must_not:文档不能匹配must_not所包括的该查询条件,相当于“NOT”

{

"query": {

"bool": { // 布尔查询

"must": [ // 查询条件 must 表示数组中的查询方式所规定的条件都必须满足

{

"multi_match": {

"query": "spring框架",

"minimum_should_match": "50%",

"fields": [

"name^10",

"description"

]

}

},

{

"term": {

"studymodel": "201001"

}

}

]

}

}

}

JavaAPI

// 搜索方式

// 首先构造多关键字查询条件

MultiMatchQueryBuilder matchQueryBuilder = QueryBuilders.multiMatchQuery("Spring开发框架", "name", "description").field("name", 10);

// 然后构造精确匹配查询条件

TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("studymodel", "201002");

// 组合两个条件,组合方式为 must 全满足

BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();

boolQueryBuilder.must(matchQueryBuilder);

boolQueryBuilder.must(termQueryBuilder);

// 将查询条件封装给查询对象

searchSourceBuilder.query(boolQueryBuilder);

过滤器

定义过滤器查询,是在原本查询结果的基础上对数据进行筛选,因此省略了重新计算的分的步骤,效率更高。并且方便缓存。推荐尽量使用过虑器去实现查询或者过虑器和查询共同使用,过滤器在布尔查询中使用,下边是在搜索结果的基础上进行过滤:

{

"query": {

"bool": {

"must": [

{

"multi_match": {

"query": "spring框架",

"minimum_should_match": "50%",

"fields": [

"name^10",

"description"

]

}

}

],

"filter": [

{

// 过滤条件:studymodel 必须是 201001

"term": {"studymodel": "201001"}

},

{

// 过滤条件:价格 >=60 <=100

"range": {"price": {"gte": 60,"lte": 100}}

}

]

}

}

}

注意:range和term一次只能对一个Field设置范围过虑。

JavaAPI

// 首先构造多关键字查询条件

MultiMatchQueryBuilder matchQueryBuilder = QueryBuilders.multiMatchQuery("Spring框架", "name", "description").field("name", 10);

// 添加条件到布尔查询

BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();

boolQueryBuilder.must(matchQueryBuilder);

// 通过布尔查询来构造过滤查询

boolQueryBuilder.filter(QueryBuilders.termQuery("studymodel", "201001"));

boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(60).lte(100));

// 将查询条件封装给查询对象

searchSourceBuilder.query(boolQueryBuilder);

排序

我们可以在查询的结果上进行二次排序,支持对 keyword、date、float 等类型添加排序,text类型的字段不允许排序。排序使用的 JSON 格式如下:

{

"query": {

"bool": {

"filter": [

{

"range": {

"price": {

"gte": 0,

"lte": 100

}

}

}

]

}

},

"sort": [ // 注意这里排序是写在 query key 的外面的。这就表示它的API也不是布尔查询提供

{

"studymodel": "desc" // 对 studymodel(keyword)降序

},

{

"price": "asc" // 对 price(double)升序

}

]

}

由上面的 JSON 数据可以发现,排序所属的 API 是和 query 评级的,因此在调用 API 时也应该选择对应的 SearchSourceBuilder 对象

// 排序查询

@Test

public void testSort() throws IOException, ParseException {

// 搜索请求对象

SearchRequest searchRequest = new SearchRequest("ysx_course");

// 指定类型

searchRequest.types("doc");

// 搜索源构建对象

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();

// 搜索方式

// 添加条件到布尔查询

BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();

// 通过布尔查询来构造过滤查询

boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(0).lte(100));

// 将查询条件封装给查询对象

searchSourceBuilder.query(boolQueryBuilder);

// 向搜索请求对象中设置搜索源

searchRequest.source(searchSourceBuilder);

// 设置排序规则

searchSourceBuilder.sort("studymodel", SortOrder.DESC); // 第一排序规则

searchSourceBuilder.sort("price", SortOrder.ASC); // 第二排序规则

// 执行搜索,向ES发起http请求

SearchResponse searchResponse = client.search(searchRequest);

// 搜索结果

SearchHits hits = searchResponse.getHits();

// 匹配到的总记录数

long totalHits = hits.getTotalHits();

// 得到匹配度高的文档

SearchHit[] searchHits = hits.getHits();

// 日期格式化对象

soutData(searchHits);

}

高亮显示

高亮显示可以将搜索结果一个或多个字突出显示,以便向用户展示匹配关键字的位置。

高亮三要素:高亮关键字、高亮前缀、高亮后缀

{

"query": {

"bool": {

"must": [

{

"multi_match": {

"query": "开发框架",

"minimum_should_match": "50%",

"fields": [

"name^10",

"description"

],

"type": "best_fields"

}

}

]

}

},

"sort": [

{

"price": "asc"

}

],

"highlight": {

"pre_tags": [

""

],

"post_tags": [

""

],

"fields": {

"name": {},

"description": {}

}

}

}

查询结果的数据如下:

java项目改mavaen_SpringBoot操作ES进行各种高级查询_第2张图片

Java 代码如下,注意到上面的 JSON 数据, highlight 和 sort 和 query 依然是同级的,所以也需要用 SearchSourceBuilder 对象来设置到搜索条件中

// 高亮查询

@Test

public void testHighLight() throws IOException, ParseException {

// 搜索请求对象

SearchRequest searchRequest = new SearchRequest("ysx_course");

// 指定类型

searchRequest.types("doc");

// 搜索源构建对象

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();

// 搜索方式

// 首先构造多关键字查询条件

MultiMatchQueryBuilder matchQueryBuilder = QueryBuilders.multiMatchQuery("Spring框架", "name", "description").field("name", 10);

// 添加条件到布尔查询

BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();

boolQueryBuilder.must(matchQueryBuilder);

// 通过布尔查询来构造过滤查询

boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(60).lte(100));

// 将查询条件封装给查询对象

searchSourceBuilder.query(boolQueryBuilder);

// ***********************

// 高亮查询

HighlightBuilder highlightBuilder = new HighlightBuilder();

highlightBuilder.preTags(""); // 高亮前缀

highlightBuilder.postTags(""); // 高亮后缀

highlightBuilder.fields().add(new HighlightBuilder.Field("name")); // 高亮字段

// 添加高亮查询条件到搜索源

searchSourceBuilder.highlighter(highlightBuilder);

// ***********************

// 设置源字段过虑,第一个参数结果集包括哪些字段,第二个参数表示结果集不包括哪些字段

searchSourceBuilder.fetchSource(new String[]{"name","studymodel","price","timestamp"},new String[]{});

// 向搜索请求对象中设置搜索源

searchRequest.source(searchSourceBuilder);

// 执行搜索,向ES发起http请求

SearchResponse searchResponse = client.search(searchRequest);

// 搜索结果

SearchHits hits = searchResponse.getHits();

// 匹配到的总记录数

long totalHits = hits.getTotalHits();

// 得到匹配度高的文档

SearchHit[] searchHits = hits.getHits();

// 日期格式化对象

soutData(searchHits);

}

根据查询结果的数据结构来获取高亮的数据,替换原有的数据:

private void soutData(SearchHit[] searchHits) throws ParseException {

SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

for (SearchHit hit : searchHits) {

// 文档的主键

String id = hit.getId();

// 源文档内容

Map sourceAsMap = hit.getSourceAsMap();

String name = (String) sourceAsMap.get("name");

// 获取高亮查询的内容。如果存在,则替换原来的name

Map highlightFields = hit.getHighlightFields();

if( highlightFields != null ){

HighlightField nameField = highlightFields.get("name");

if(nameField!=null){

Text[] fragments = nameField.getFragments();

StringBuffer stringBuffer = new StringBuffer();

for (Text str : fragments) {

stringBuffer.append(str.string());

}

name = stringBuffer.toString();

}

}

// 由于前边设置了源文档字段过虑,这时description是取不到的

String description = (String) sourceAsMap.get("description");

// 学习模式

String studymodel = (String) sourceAsMap.get("studymodel");

// 价格

Double price = (Double) sourceAsMap.get("price");

// 日期

Date timestamp = dateFormat.parse((String) sourceAsMap.get("timestamp"));

System.out.println(name);

System.out.println(id);

System.out.println(studymodel);

System.out.println("你看不见我,看不见我~" + description);

System.out.println(price);

}

}

你可能感兴趣的:(java项目改mavaen)