- NocoBase 本周更新汇总:新增路由管理
汇总一周产品更新日志,最新发布可以前往我们的博客查看。NocoBase目前更新包括的版本更新包括三个分支:main,next和develop。main:截止目前最稳定的版本,推荐安装此版本。next:包含即将发布的新功能,经过初步测试的版本,可能存在部分已知或未知问题。主要面向测试用户,用于收集反馈和进一步优化功能。适合愿意提前体验新功能并提供反馈的测试用户。develop:开发中的版本,包含最新
- 数据挖掘与数据分析
「已注销」
数据分析数据挖掘数据分析人工智能
目录数据挖掘与数据分析一.数据的本质二.什么是数据挖掘和数据分析三.数据挖掘和数据分析有什么区别案例及应用1.基于分类模型的案例2.基于预测模型的案例3.基于关联分析的案例4.基于聚类分析的案例5.基于异常值分析的案例6.基于协同过滤的案例7.基于社会网络分析的案例8.基于文本分析的案例结语数据挖掘与数据分析在当今数字化的时代,数据成为了我们生活和工作中不可或缺的一部分。数据的价值在于其所蕴含的信
- 软件供应链安全工具链研究系列—RASP自适应威胁免疫平台(下篇)
DevSecOps选型指南
安全网络软件供应链安全工具HW
在“软件供应链安全工具链研究系列—RASP自适应威胁免疫平台-上篇”中我们提到了RASP工具的基本能力、原理以及工具的应用场景,了解到了RASP工具在各场景下发挥的价值。那么在当今高强度攻防对抗的大场景下,RASP作为最后一道防线,不论是从高危漏洞修复还是应对高级攻击技术,都有着更高的要求。1.工具应具备的能力建议1.1技术能力方面建议1.1.1虚拟补丁技术RASP在为应用系统赋予威胁免疫能力的同
- MySQL面试学习
hxung
面试学习使用mysql面试学习
MySQL1.事务事务的4大特性事务4大特性:原子性、一致性、隔离性、持久性原⼦性:事务是最⼩的执⾏单位,不允许分割。事务的原⼦性确保动作要么全部完成,要么全不执行一致性:执⾏事务前后,数据保持⼀致,多个事务对同⼀个数据读取的结果是相同的;隔离性:并发访问数据库时,⼀个⽤户的事务不被其他事务所⼲扰,各并发事务之间数据库是独⽴的;持久性:⼀个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库
- 在数据分析工作中运用因果推断模型的实践指南
theskylife
#因果分析数据分析大数据人工智能AI因果分析
目录1.写在开头2.因果推断模型的基础2.1因果关系vs.相关关系2.2基本概念和术语3.常见的因果推断方法3.1随机对照试验(RCTs)3.2工具变量法(IV)3.3回归不连续设计(RDD)4.因果推断的实际应用4.1案例研究1:使用RCTs分析营销活动的效果4.1.1背景和问题描述4.1.2实验设计和数据收集4.1.3数据分析和结果解释4.2案例研究2:应用工具变量法解决价格对销量的影响问题4
- PLM项目管理工具盘点:2025年TOP 10,如何选择最适合的工具?
为什么PLM工具是企业成败的关键?在2025年,全球78%的企业项目因管理工具不当导致超支或延期。PLM(产品生命周期管理)系统作为覆盖项目全周期的"数字大脑",已成为企业竞争力的核心要素。本文将从实战视角,结合制造业、IT、建筑等行业的典型案例,解析如何选择适配业务特性的PLM工具。一、PLM工具的核心价值矩阵通过交叉分析20+行业案例(图1),我们发现优秀PLM工具需满足四大维度:维度功能要求
- NocoBase 本周更新汇总:支持全局和批量数据触发自定义操作事件
汇总一周产品更新日志,最新发布可以前往我们的博客查看。NocoBase目前更新包括的版本更新包括三个分支:main,next和develop。main:截止目前最稳定的版本,推荐安装此版本。next:包含即将发布的新功能,经过初步测试的版本,可能存在部分已知或未知问题。主要面向测试用户,用于收集反馈和进一步优化功能。适合愿意提前体验新功能并提供反馈的测试用户。develop:开发中的版本,包含最新
- NocoBase 本周更新汇总:优化及缺陷修复
汇总一周产品更新日志,最新发布可以前往我们的博客查看。上周我们发布了NocoBase1.5.0版本,带来内核优化、大规模数据导入导出、邮件管理、模板打印等多项新特性。NocoBase目前更新包括的版本更新包括三个分支:main,next和develop。main:截止目前最稳定的版本,推荐安装此版本。next:包含即将发布的新功能,经过初步测试的版本,可能存在部分已知或未知问题。主要面向测试用户,
- 电力电子行业哪种工程师最挣钱
麦克斯的电子星球
电力电子工程师基础硬件工程嵌入式硬件材料工程硬件架构pcb工艺arm开发驱动开发
电力电子产品从研发到生产需要很多工程师参与,还需要一些专业的管理人员相互配合,主要有以下这么几种职位1.项目经理主要负责项目的规划,撰写节点报告,监督项目组内各个人员的工作完成情况,还需要跟各个部门进行沟通衔接。这个工作可大可小,大部分项目经理一般都是从工程师,尤其是电力电子硬件工程师转过来的,基本上对公司的流程,技术点都十分清楚,有很多实战经验,所以这个项目经理属于技术管理,也相当于领导职位;也
- 【2025年07期免费获取股票数据API接口】实例演示五种主流语言获取股票行情api接口之沪深A股历史分时KDJ数据获取实例演示及接口API说明文档
不会写代码的码农农
pythonjava开发语言大数据
在近一至两年期间,股票量化分析逐步成为备受关注的热门议题。对于投身于该领域工作而言,首要步骤便是获取全面且精准的股票数据。无论是实时交易数据、历史交易记录、财务数据,亦或是基本面信息,这些数据均是开展量化分析过程中不可或缺的宝贵资源。我们的核心任务在于从这些数据中提炼出具有价值的信息,从而为投资策略提供坚实有力的指导。在数据探索进程中,我尝试运用了多种方法,涵盖自编网易股票页面爬虫程序、申万行业数
- 数业有道,智赢未来:派可数据 BI 助力企业数字化升级、高质量增长
派可数据
数据要素数据仓库商业智能数据分析信息可视化大数据商业智能BI数据仓库
前言当前,企业数字化转型经过初始探索阶段,各行各业进入高速发展百花齐放的创新应用新阶段。创新应用阶段的核心是企业应用先进的数字技术和工具,对企业多年在全领域积累的各类数据,包括财务、业务、生产、设计、设备、工艺等结构化数据,以及非结构、半结构的日志、音、视数据,通过算法深度分析并挖掘数据的价值,以此来改变和提升企业、组织或个人的运营模式、业务流程、管理方式以及价值创造能力,进而支撑企业战略目标的实
- 为什么企业必须拥有SAP内部顾问?10大核心价值深度解析
EasyStudios
SAP实施知识SAP内部顾问企业数字化转型ERP系统运维IT与业务融合
引言:一个价值百万的抉择"当企业投入百万级资金建设SAP系统后,持续运维成本中最大的隐性开支是什么?——是外部顾问高昂的服务费,还是内部沟通的损耗成本?"本文将通过10个真实场景,揭示SAP内部顾问如何成为企业数字化进程中的战略性资产。一、破解沟通困局:从网状结构到单点枢纽1.多对多沟通VS单点对接外部顾问模式:复制业务部门A↔顾问团队X业务部门B↔顾问团队Y业务部门C↔顾问团队Z内部顾问模式:复
- DeepSeek 高阶应用技术详解(4)
Evaporator Core
#DeepSeek快速入门DeepSeek进阶开发与应用deepseek
1.引言在前三篇中,我们探讨了DeepSeek的基础功能、分布式训练、模型优化、模型解释性、超参数优化以及AutoML的应用。本篇将深入探讨DeepSeek在时间序列分析、图神经网络(GNN)和推荐系统中的应用。这些领域是深度学习的前沿方向,具有广泛的实际应用价值。2.DeepSeek在时间序列分析中的应用2.1时间序列分析简介时间序列分析是处理时间相关数据的重要技术,广泛应用于金融、气象、医疗等
- 深入解析内容分发网络(CDN):现代互联网的加速引擎
斯~内克
网络网络
一、CDN的核心价值与演进历程1.1互联网流量爆发的时代挑战全球互联网流量以每年30%的速度增长,视频流量占比超过80%。传统中心化服务器架构面临三大瓶颈:地理延迟:纽约到悉尼的理论延迟约160ms带宽成本:视频流量导致带宽开支增加300%单点故障:集中式架构的可用性难以突破99.9%1.2CDN的技术演进路线代际时间范围核心技术典型带宽节点密度第一代1998-2005静态缓存+DNS轮询100M
- Java之I/O流(最详细的I/O流总结)
熊凯瑞
Javajava开发语言intellij-idea
I/O流I/O流1、定义2、分类2.1字节流和字符流2.2输入流和输出流2.3节点流和处理流3、结构4、字节流4.1定义4.2说明4.3字节流概述4.4InputStream的常用方法4.5OutputStream的常用方法5、字节流读写文件5.1说明5.2注意5.3字节输入流——相关代码5.4字节输出流——相关代码6、文件的拷贝6.1需求6.2分析6.3注意6.4快捷键6.5相关代码7、字节流的
- 【Transforme-SVM多特征分类预测】基于Transforme-支持向量机多特征分类预测。(可做分类/回归/时序预测,具体私聊),可直接运行。matlab代码,2023b及其以上。1.运行
智能算法及其模型预测
支持向量机分类回归
【Transforme-SVM多特征分类预测】基于Transforme-支持向量机多特征分类预测。(可做分类/回归/时序预测,具体私聊),可直接运行。matlab代码,2023b及其以上。1.运行环境要求MATLAB版本为2023b,多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。2.程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。3.多边形面积PA
- 【漫话机器学习系列】106.线性激活函数(Linear Activation Function)
IT古董
漫话机器学习系列专辑机器学习人工智能激活函数
1.什么是线性激活函数?线性激活函数是一种最简单的激活函数,数学表达式为:即输出与输入保持完全线性关系。这意味着对于任何输入值x,其输出将等于输入值本身,函数图像为一条通过原点的直线。在神经网络中,激活函数的作用是将网络的线性组合映射到某种非线性输出。传统的线性激活函数常用于一些特定场景,比如回归问题,其中预测的目标值与输入特征之间可能存在线性关系。2.线性激活函数的特点线性关系:与其他常见的激活
- Svelte 最新中文文档教程(22)—— 自定义元素
前言Svelte,一个语法简洁、入门容易,面向未来的前端框架。从Svelte诞生之初,就备受开发者的喜爱,根据统计,从2019年到2024年,连续6年一直是开发者最感兴趣的前端框架No.1:Svelte以其独特的编译时优化机制著称,具有轻量级、高性能、易上手等特性,非常适合构建轻量级Web项目。为了帮助大家学习Svelte,我同时搭建了Svelte最新的中文文档站点。如果需要进阶学习,也可以入手我
- C++ 书籍分享:带你畅游编程世界
七七知享
开发书库c++开发语言pythonjavac语言javascriptqt
在C++编程的浩瀚海洋中,挑选合适的学习书籍至关重要。今天就给大家分享几本极具价值的C++书籍。提高C++性能的编程技术.左飞深度探索C++对象模型C和C++安全编码(中文版).Robert.C.SeacordC++编程艺术C++编程规范-101条规则准则与最佳实践无论你是刚踏入编程领域的新手,还是寻求技术突破的进阶者,这些书籍都能为你在C++学习之路上提供有力的支持,助你不断提升编程水平。C++
- redission的原理
深圳卢先生
java
分布式锁的实现Redisson最出名的功能之一是分布式锁(RLock)。它的锁机制基于Redis的原子性操作:使用SETNX(SETifNoteXists)命令尝试获取锁,并设置一个过期时间(防止死锁)。通过Lua脚本确保锁的释放是原子性的,只有持有锁的客户端才能释放锁。支持锁续期(Watchdog机制):如果任务未完成,Redisson会自动为锁延长过期时间。实现细节1.锁的基本存储Rediss
- 小程序租赁系统智能风控与区块链整合
红点聊租赁
其他
内容概要想在小程序里搞租赁生意?光有个扫码入口可不够,得先给系统装上"风险雷达"。这套智能风控闭环就像给平台雇了个24小时不眨眼的AI保安——芝麻信用分刚过及格线?先别急着免押,让央行征信数据再给它做套CT扫描。区块链存证可不是单纯把合同扔进链上就完事,得像给重要文件套上十层防弹玻璃,每次租赁行为都被刻成带时间戳的"数字琥珀",就算遇到老赖扯皮,直接调取司法链上的证据包,分分钟能当庭播放交易全息录
- JS宏进阶:浅谈曲线回归
jackispy
JS宏进阶回归数据挖掘人工智能javascript
曲线回归是一种统计学方法,用于研究两个或多个变量之间的非线性关系,并找到最能拟合数据点的曲线函数形式。与线性回归不同,曲线回归适用于描述那些不是直线性的变量关系。通过曲线回归,可以建立变量之间的非线性数学模型,用于预测和解释各种实际现象。一、基本概念定义:曲线回归是指对于非线性关系的变量进行回归分析的方法。曲线回归方程一般是以自变量的多项式或其他非线性函数形式表达因变量。目的:曲线回归的主要目的是
- 数据安全_笔记系列09_人工智能(AI)与机器学习(ML)在数据安全中的深度应用
宁宁可可
数据安全数据安全
数据安全_笔记系列09_人工智能(AI)与机器学习(ML)在数据安全中的深度应用人工智能与机器学习技术通过自动化、智能化的数据分析,显著提升了数据分类、威胁检测的精度与效率,尤其在处理非结构化数据、复杂威胁场景和降低误报/漏报率方面表现突出。以下从技术原理、应用场景、实施流程、工具与案例展开解析:一、AI/ML如何提升数据安全能力?1.核心价值复杂数据识别:解析非结构化数据(文本、图像、音视频)中
- 模式识别课程设计:人脸识别 背景与问题引入之问题描述
XLYcmy
模式识别网络安全人工智能课程设计模式识别人脸识别PCALLM
1.2问题描述通过之前的背景介绍可以知道人脸识别技术作为计算机视觉和模式识别领域的重要研究方向,已广泛应用于身份验证、安全监控、智能家居等多个领域。随着计算机硬件性能的不断提升和深度学习技术的成熟,人脸识别的精度和应用场景不断扩展。本研究设计了一种基于主成分分析(PCA)[7]和K-L变换的人脸识别系统,利用ORL人脸数据库作为数据源,对输入的人脸图像进行识别,并输出与其特征最相似的人脸。该系统的
- python曲线回归小案例教程
jackispy
python回归开发语言
一、曲线回归的定义曲线回归是一种统计方法,用于建立自变量(独立变量)和因变量(依赖变量)之间的非线性关系模型。与线性回归不同,线性回归假设自变量和因变量之间的关系是线性的,即可以通过一条直线来描述数据点的趋势;而曲线回归则允许这种关系是非线性的,可能表现为曲线、抛物线、指数、对数或其他复杂的数学形式。其主要特征如下:非线性关系:曲线回归适用于那些不能用直线来充分描述的数据关系。它允许模型以曲线形式
- 【机器学习与数据挖掘实战】案例15:基于LDA模型的电商产品评论数据情感分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘人工智能LDA主题模型情感分析文本分析python
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- Spring Boot从入门到精通:一站式掌握企业级开发
一位卑微的码农
springboot后端java
前言SpringBoot作为Java领域最流行的微服务框架,凭借其约定优于配置的理念和快速启动的特性,极大简化了Spring应用的初始搭建和开发过程。本文将带你从零开始系统学习SpringBoot,最终实现精通级应用开发,涵盖核心原理、实战技巧及性能优化。一、SpringBoot入门篇1.SpringBoot简介核心优势:自动配置、内嵌服务器(Tomcat/Jetty)、Starter依赖简化适用
- KNN 算法优化实战分享
轻口味
算法与实践算法
KNN算法优化实战分享KNN算法优化实战分享一、引言1.KNN算法的核心思想与特点KNN(K-NearestNeighbors)算法是一种基于距离的相似性分类与回归算法。其核心原理是:对于一个待预测样本,计算其与训练集中所有样本的距离,选取距离最近的K个样本,根据这K个样本的标签进行投票(分类)或均值计算(回归),从而得到待预测样本的标签。KNN算法具有以下核心优势:无需训练:与其他需要通过大量数
- 一个9年archlinux重度使用者自述
linux
引言系统没有高低贵贱,主要还是使用的人,哪个跟你更契合。对我而言,archlinux就是最契合的那个。本文主要是对archlinux使用做一个粗浅的介绍,如果能勾起你一丝兴趣,那就更好了。第一部分:初识ArchLinux从Ubuntu和Fedora到Arch的转变大学期间了解到有linux这么一类系统,看起来很酷,那命令行操作神秘又高级,瞬间引起了我的兴趣。经过各种对比,选择了最容易上手的ubun
- 爬虫必备html和css基础知识
ylfhpy
爬虫项目入门爬虫htmlcsspython
一、引言在当今数字化时代,网络上蕴含着海量的有价值数据。Python爬虫技术凭借其高效、灵活的特点,成为了获取这些数据的重要手段。而网页数据通常以HTML格式呈现,要想准确地从网页中提取所需信息,就需要深入了解HTML标签的结构和含义,以及如何运用CSS选择器精准定位目标元素。本文将围绕这两方面展开详细阐述,旨在帮助掌握Python爬虫的关键基础技能。二、常用HTML标签详解2.1文本结构标签2.
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s