转自厘米姑娘的简书
链接:https://www.jianshu.com/p/718aa3c1a70b
Q:说下Activity的生命周期?
- onCreate()表示Activity 正在创建,常做初始化工作,如setContentView界面资源、初始化数据
- onStart()表示Activity 正在启动,这时Activity 可见但不在前台,无法和用户交互
- onResume()表示Activity 获得焦点,此时Activity 可见且在前台并开始活动
- onPause()表示Activity 正在停止,可做 数据存储、停止动画等操作
- onStop()表示activity 即将停止,可做稍微重量级回收工作,如取消网络连接、注销广播接收器等
- onDestroy()表示Activity 即将销毁,常做回收工作、资源释放
- 另外,当Activity由后台切换到前台,由不可见到可见时会调用onRestart(),表示Activity 重新启动
Q:onStart()和onResume()/onPause()和onStop()的区别?
Q:Activity A启动另一个Activity B会回调哪些方法?如果Activity B是完全透明呢?如果启动的是一个对话框Activity呢?
Q:谈谈onSaveInstanceState()方法?何时会调用?
Q:onSaveInstanceState()与onPause()的区别?
Q:如何避免配置改变时Activity重建?
Q:优先级低的Activity在内存不足被回收后怎样做可以恢复到销毁前状态?
Q:说下Activity的四种启动模式?(有时会出个实际问题来分析返回栈中Activity的情况)
技术点:Activity启动模式
思路:分条解释四个启动模式的特点
参考回答:
- standard标准模式:每次启动一个Activity就会创建一个新的实例
- singleTop栈顶复用模式:如果新Activity已经位于任务栈的栈顶,就不会重新创建,并回调 onNewIntent(intent)方法
- singleTask栈内复用模式:只要该Activity在一个任务栈中存在,都不会重新创建,并回调onNewIntent(intent)方法。如果不存在,系统会先寻找是否存在需要的栈,如果不存在该栈,就创建一个任务栈,并把该Activity放进去;如果存在,就会创建到已经存在的栈中
- singleInstance单实例模式:具有此模式的Activity只能单独位于一个任务栈中,且此任务栈中只有唯一一个实例
Q:谈谈singleTop和singleTask的区别以及应用场景
参考回答:singleTop和singleTask的含义分别是…,可见两者大致区别有:
- singleTop:同个Activity实例在栈中可以有多个,即可能重复创建;该模式的Activity会默认进入启动它所属的任务栈,即不会引起任务栈的变更;为防止快速点击时多次startActivity,可以将目标Activity设置为singleTop
- singleTask:同个Activity实例在栈中只有一个,即不存在重复创建;可通过android:taskAffinity设定该Activity需要的任务栈,即可能会引起任务栈的变更;常用于主页和登陆页
Q:onNewIntent()调用时机?
- singleTop:如果新Activity已经位于任务栈的栈顶,就不会重新创建,并回调 onNewIntent(intent) 方法
- singleTask:只要该Activity在一个任务栈中存在,都不会重新创建,并回调 onNewIntent(intent) 方法
Q:了解哪些A ctivity启动模式的标记位?
FLAG_ACTIVITY_SINGLE_TOP:对应singleTop启动模式
FLAG_ACTIVITY_NEW_TASK :对应singleTask模式
Q:如何启动其他应用的Activity?
- 一个intent只有同时匹配某个Activity的intent-filter中的action、category、data才算完全匹配,才能启动该Activity。
- 一个Activity可以有多个 intent-filter,一个 intent只要成功匹配任意一组
intent-filter,就可以启动该Activity。
Q:Activity的启动过程?
Q:谈一谈Fragment的生命周期?
- onAttach():当Fragment和Activity建立关联时调用
- onCreateView():当Fragment创建视图时调用
- onActivityCreated():当与Fragment相关联的Activity完成onCreate()之后调用
- onDestroyView():在Fragment中的布局被移除时调用
- onDetach():当Fragment和Activity解除关联时调用
Q:Activity和Fragment的异同?
- Activity和Fragment的相似点在于,它们都可包含布局、可有自己的生命周期,Fragment可看似迷你活动。
- 不同点是,由于Fragment是依附在Activity上的,多了些和宿主Activity相关的生命周期方法,如onAttach()、onActivityCreated()、onDetach();另外,Fragment的生命周期方法是由宿主Activity而不是操作系统调用的,Activity中生命周期方法都是protected,而Fragment都是public,也能印证了这一点,因为Activity需要调用Fragment那些方法并管理它。
Q:Activity和Fragment的关系?
- 正如Fragment的名字“碎片”,它的出现是为了解决Android碎片化,它可作为Activity界面的组成部分,可在Activity运行中实现动态地加入、移除和交换。
- 一个Activity中可同时出现多个Fragment,一个Fragment也可在多个Activity中使用。
- 另外,Activity的FragmentManager负责调用队列中Fragment的生命周期方法,只要Fragment的状态与Activity的状态保持了同步,宿主Activity的FragmentManager便会继续调用其他生命周期方法以继续保持Fragment与Activity的状态一致。
Q:何时会考虑使用Fragment?
Q:谈一谈Service的生命周期?
- onCreate():服务第一次被创建时调用
- onStartComand():服务启动时调用
- onBind():服务被绑定时调用
- onUnBind():服务被解绑时调用
- onDestroy():服务停止时调用
Q:Service的两种启动方式?区别在哪?
- 第一种,其他组件调用Context的 startService()方法可以启动一个Service,并回调服务中的onStartCommand()。如果该服务之前还没创建,那么回调的顺序是onCreate()->onStartCommand()。服务启动了之后会一直保持运行状态,直到 stopService() 或 stopSelf() 方法被调用,服务停止并回调onDestroy()。另外,无论调用多少次startService()方法,只需调用一次stopService()或stopSelf()方法,服务就会停止了。
- 第二种,其它组件调用Context的 bindService()可以绑定一个Service,并回调服务中的onBind()方法。类似地,如果该服务之前还没创建,那么回调的顺序是onCreate()->onBind()。之后,调用方可以获取到onBind()方法里返回的IBinder对象的实例,从而实现和服务进行通信。只要调用方和服务之间的连接没有断开,服务就会一直保持运行状态,直到调用了 unbindService() 方法服务会停止,回调顺序onUnBind()->onDestroy()。
Q:一个Activty先start一个Service后,再bind时会回调什么方法?此时如何做才能回调Service的destory()方法?
Q:Service如何和Activity进行通信?
Q:用过哪些系统Service?
技术点:Service类型(系统Service)
参考回答:
Q:是否能在Service进行耗时操作?如果非要可以怎么做?
Q:AlarmManager能实现定时的原理?
Q:前台服务是什么?和普通服务的不同?如何去开启一个前台服务?
Q:是否了解ActivityManagerService,谈谈它发挥什么作用?
Q:如何保证Service不被杀死?
- 在Service的onStartCommand()中设置flages值为START_STICKY,使得Service被杀死后尝试再次启动Service
- 提升Service优先级,比如设置为一个前台服务
- 在Activity的onDestroy()通过发送广播,并在广播接收器的onReceive()中启动Service
Q:广播有几种形式?什么特点?
- 普通广播:一种完全异步执行的广播,在广播发出之后,所有的广播接收器几乎都会在同一时刻接收到这条广播消息,因此它们接收的先后是随机的。
- 有序广播:一种同步执行的广播,在广播发出之后,同一时刻只会有一个广播接收器能够收到这条广播消息,当这个广播接收器中的逻辑执行完毕后,广播才会继续传递,所以此时的广播接收器是有先后顺序的,且优先级(priority)高的广播接收器会先收到广播消息。有序广播可以被接收器截断使得后面的接收器无法收到它。
- 本地广播:发出的广播只能够在应用程序的内部进行传递,并且广播接收器也只能接收本应用程序发出的广播。
- 粘性广播:这种广播会一直滞留,当有匹配该广播的接收器被注册后,该接收器就会收到此条广播。
Q:广播的两种注册形式?区别在哪?
Q:ContentProvider了解多少?
Q:Android中提供哪些数据持久存储的方法?
- File 文件存储:写入和读取文件的方法和 Java中实现I/O的程序一样。
- SharedPreferences存储:一种轻型的数据存储方式,常用来存储一些简单的配置信息,本质是基于XML文件存储key-value键值对数据。
- SQLite数据库存储:一款轻量级的关系型数据库,它的运算速度非常快,占用资源很少,在存储大量复杂的关系型数据的时可以使用。
- ContentProvider:四大组件之一,用于数据的存储和共享,不仅可以让不同应用程序之间进行数据共享,还可以选择只对哪一部分数据进行共享,可保证程序中的隐私数据不会有泄漏风险。
Q:Java中的I/O流读写怎么做?
Q:SharePreferences适用情形?使用中需要注意什么?
Q:了解SQLite中的事务处理吗?是如何做的?
Q:使用SQLite做批量操作有什么好的方法吗?
Q:如果现在要删除SQLite中表的一个字段如何做?
Q:使用SQLite时会有哪些优化操作?
- 使用事务做批量操作:具体操作见上 及时关闭Cursor,避免内存泄漏
- 耗时操作异步化:数据库的操作属于本地IO,通常比较耗时,建议将这些耗时操作放入异步线程中处理
- ContentValues的容量调整:ContentValues内部采用HashMap来存储Key-Value数据,ContentValues初始容量为8,扩容时翻倍。因此建议对ContentValues填入的内容进行估量,设置合理的初始化容量,减少不必要的内部扩容操作
- 使用索引加快检索速度:对于查询操作量级较大、业务对要求查询要求较高的推荐使用索引
Q:Android中进程和线程的关系?
形象理解:如果把安卓系统比喻成一片土壤,可以把App看做扎根在这片土壤上的工厂,每个APP一般对应一个进程,那么线程就像是工厂的生产线。其中,主线程好比是主生产线,只有一条,子线程就像是副生产线,可以有很多条。
关系:一个APP一般对应一个进程和有限个线程
- 一般对应一个进程,当然,可以在AndroidMenifest中给四大组件指定属性android:process开启多进程模式
- 有限个线程:线程是一种受限的系统资源,不可无限制的产生且线程的创建和销毁都有一定的开销。
Q:为何需要进行IPC?多进程通信可能会出现什么问题?
- 静态变量和单例模式失效:由独立的虚拟机造成
- 线程同步机制失效:由独立的虚拟机造成
- SharedPreference的不可靠下降:不支持两个进程同时进行读写操作,即不支持并发读写,有一定几率导致数据丢失
- Application多次创建: Android系统会为新的进程分配独立虚拟机,相当于系统又把这个应用重新启动了一次。
Q:什么是序列化?Serializable接口和Parcelable接口的区别?为何推荐使用后者?
应用场景:需要通过Intent和Binder等传输类对象就必须完成对象的序列化过程。
两种方式:实现Serializable/Parcelable接口。不同点如图:
Q:Android中为何新增Binder来作为主要的IPC方式?
传输效率高、可操作性强:传输效率主要影响因素是内存拷贝的次数,拷贝次数越少,传输速率越高。从Android进程架构角度分析:对于消息队列、Socket和管道来说,数据先从发送方的缓存区拷贝到内核开辟的缓存区中,再从内核缓存区拷贝到接收方的缓存区,一共两次拷贝,如图:
而对于Binder来说,数据从发送方的缓存区拷贝到内核的缓存区,而接收方的缓存区与内核的缓存区是映射到同一块物理地址的,节省了一次数据拷贝的过程,如图:
由于共享内存操作复杂,综合来看,Binder的传输效率是最好的。
- 实现C/S架构方便:Linux的众IPC方式除了Socket以外都不是基于C/S架构,而Socket主要用于网络间的通信且传输效率较低。Binder基于C/S架构
,Server端与Client端相对独立,稳定性较好。- 安全性高:传统Linux
IPC的接收方无法获得对方进程可靠的UID/PID,从而无法鉴别对方身份;而Binder机制为每个进程分配了UID/PID且在Binder通信时会根据UID/PID进行有效性检测。
Q:使用Binder进行数据传输的具体过程?
Q:Binder框架中ServiceManager的作用?
技术点:Binder机制
思路:从Binder框架出发讨论每个元素的作用
参考回答:在Binder框架定义了四个角色:Server,Client,ServiceManager和Binder驱动。其中Server、Client、ServiceManager运行于用户空间,Binder驱动运行于内核空间。关系如图:
Server&Client:服务器&客户端。在Binder驱动和Service
Manager提供的基础设施上,进行Client-Server之间的通信。
- ServiceManager服务的管理者,将Binder名字转换为Client中对该Binder的引用,使得Client可以通过Binder名字获得Server中Binder实体的引用。流程如图:
Binder驱动:
与硬件设备没有关系,其工作方式与设备驱动程序是一样的,工作于内核态。
提供open()、mmap()、poll()、ioctl()等标准文件操作。
以字符驱动设备中的misc设备注册在设备目录/dev下,用户通过/dev/binder访问该它。
负责进程之间binder通信的建立,传递,计数管理以及数据的传递交互等底层支持。
驱动和应用程序之间定义了一套接口协议,主要功能由ioctl()接口实现,由于ioctl()灵活、方便且能够一次调用实现先写后读以满足同步交互,因此不必分别调用write()和read()接口。
其代码位于linux目录的drivers/misc/binder.c中。
Q:Android中有哪些基于Binder的IPC方式?简单对比下?
技术点:IPC方式
思路:分析每种IPC方式的优缺点和使用场景的差异
参考回答:
Q:是否了解AIDL?原理是什么?如何优化多模块都使用AIDL的情况?
AIDL(Android Interface Definition
Language,Android接口定义语言):如果在一个进程中要调用另一个进程中对象的方法,可使用AIDL生成可序列化的参数,AIDL会生成一个服务端对象的代理类,通过它客户端实现间接调用服务端对象的方法。AIDL的本质是系统提供了一套可快速实现Binder的工具。关键类和方法:
- AIDL接口:继承IInterface。
- Stub类:Binder的实现类,服务端通过这个类来提供服务。
- Proxy类:服务器的本地代理,客户端通过这个类调用服务器的方法。
- asInterface():客户端调用,将服务端的返回的Binder对象,转换成客户端所需要的AIDL接口类型对象。返回对象:
- 若客户端和服务端位于同一进程,则直接返回Stub对象本身;
- 否则,返回的是系统封装后的Stub.proxy对象。
- asBinder():根据当前调用情况返回代理Proxy的Binder对象。
- onTransact():运行服务端的Binder线程池中,当客户端发起跨进程请求时,远程请求会通过系统底层封装后交由此方法来处理。
- transact():运行在客户端,当客户端发起远程请求的同时将当前线程挂起。之后调用服务端的onTransact()直到远程请求返回,当前线程才继续执行。
当有多个业务模块都需要AIDL来进行IPC,此时需要为每个模块创建特定的aidl文件,那么相应的Service就会很多。必然会出现系统资源耗费严重、应用过度重量级的问题。解决办法是建立Binder连接池,即将每个业务模块的Binder请求统一转发到一个远程Service中去执行,从而避免重复创建Service。
- 工作原理:每个业务模块创建自己的AIDL接口并实现此接口,然后向服务端提供自己的唯一标识和其对应的Binder对象。服务端只需要一个Service,服务器提供一个queryBinder接口,它会根据业务模块的特征来返回相应的Binder对像,不同的业务模块拿到所需的Binder对象后就可进行远程方法的调用了。流程如图:
![在这里插入图片描述](https://img-blog.csdnimg.cn/20190111161511605.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3F1bnF1bnN0eWxlOTk=,size_16,color_FFFFFF,t_70)
Q:MotionEvent是什么?包含几种事件?什么条件下会产生?
- ACTION_DOWN:手指刚接触屏幕
- ACTION_MOVE:手指在屏幕上滑动
- ACTION_UP:手指在屏幕上松开的一瞬间
- ACTION_CANCEL:手指保持按下操作,并从当前控件转移到外层控件时会触发
Q:scrollTo()和scrollBy()的区别?
Q:Scroller中最重要的两个方法是什么?主要目的是?
在MotionEvent.ACTION_UP事件触发时调用startScroll()方法,该方法并没有进行实际的滑动操作,而是记录滑动相关量
马上调用invalidate/postInvalidate()方法,请求View重绘,导致View.draw方法被执行
紧接着会调用View.computeScroll()方法,此方法是空实现,需要自己处理逻辑。具体逻辑是:先判断computeScrollOffset(),若为true(表示滚动未结束),则执行scrollTo()方法,它会再次调用postInvalidate(),如此反复执行,直到返回值为false。流程图如下:
其中,最重要的两个方法是startScroll()和computeScroll()
Q:谈一谈View的事件分发机制?
事件分发本质:就是对MotionEvent事件分发的过程。即当一个MotionEvent产生了以后,系统需要将这个点击事件传递到一个具体的View上。
点击事件的传递顺序:Activity(Window) -> ViewGroup -> View
三个主要方法:
- dispatchTouchEvent:进行事件的分发(传递)。返回值是 boolean类型,受当前onTouchEvent和下级view的dispatchTouchEvent影响
- onInterceptTouchEvent:对事件进行拦截。该方法只在ViewGroup中有,View(不包含 ViewGroup)是没有的。一旦拦截,则执行ViewGroup的onTouchEvent,在ViewGroup中处理事件,而不接着分发给View。且只调用一次,所以后面的事件都会交给ViewGroup处理。
- onTouchEvent:进行事件处理。
Q:如何解决View的滑动冲突?
- 对于由于外部滑动和内部滑动方向不一致导致的滑动冲突,可以根据滑动的方向判断谁来拦截事件。
- 对于由于外部滑动方向和内部滑动方向一致导致的滑动冲突,可以根据业务需求,规定何时让外部View拦截事件何时由内部View拦截事件。
- 对于上面两种情况的嵌套,相对复杂,可同样根据需求在业务上找到突破点。
外部拦截法:指点击事件都先经过父容器的拦截处理,如果父容器需要此事件就拦截,否则就不拦截。具体方法:需要重写父容器的onInterceptTouchEvent方法,在内部做出相应的拦截。
内部拦截法:指父容器不拦截任何事件,而将所有的事件都传递给子容器,如果子容器需要此事件就直接消耗,否则就交由父容器进行处理。具体方法:需要配合requestDisallowInterceptTouchEvent方法。
Q:谈一谈View的工作原理?
技术点:View工作流程
思路:围绕三大流程展开
参考回答:View工作流程简单来说就是,先measure测量,用于确定View的测量宽高,再
layout布局,用于确定View的最终宽高和四个顶点的位置,最后 draw绘制,用于将View 绘制到屏幕上。具体过程图见:
- ViewRoot对应于ViewRootImpl类,它是连接WindowManager和DecorView的纽带。
- View的绘制流程是从ViewRoot和performTraversals开始。
- performTraversals()依次调用performMeasure()、performLayout()和performDraw()三个方法,分别完成顶级View的绘制。
- 其中,performMeasure()会调用measure(),measure()中又调用onMeasure(),实现对其所有子元素的measure过程,这样就完成了一次measure过程;接着子元素会重复父容器的measure过程,如此反复至完成整个View树的遍历。layout和draw同理。
Q:MeasureSpec是什么?有什么作用?
作用:通过宽测量值widthMeasureSpec和高测量值heightMeasureSpec决定View的大小
组成:一个32位int值,高2位代表SpecMode(测量模式),低30位代表SpecSize( 某种测量模式下的规格大小)。
三种模式:
- UNSPECIFIED:父容器不对View有任何限制,要多大有多大。常用于系统内部。
- EXACTLY(精确模式):父视图为子视图指定一个确切的尺寸SpecSize。对应LyaoutParams中的match_parent或具体数值。
- AT_MOST(最大模式):父容器为子视图指定一个最大尺寸SpecSize,View的大小不能大于这个值。对应LayoutParams中的wrap_content。
决定因素:值由子View的布局参数LayoutParams和父容器的MeasureSpec值共同决定。具体规则见下图:
- 引申:直接继承View的自定义View需要重写onMeasure()并设置wrap_content时的自身大小,否则效果相当于macth_parent
Q:自定义View/ViewGroup需要注意什么?
技术点:自定义View
参考回答:
Q:onTouch()、onTouchEvent()和onClick()关系?
Q:SurfaceView和View的区别?
- View需要在UI线程对画面进行刷新,而SurfaceView可在子线程进行页面的刷新
- View适用于主动更新的情况,而SurfaceView适用于被动更新,如频繁刷新,这是因为如果使用View频繁刷新会阻塞主线程,导致界面卡顿
- SurfaceView在底层已实现双缓冲机制,而View没有,因此SurfaceView更适用于需要频繁刷新、刷新时数据处理量很大的页面
Q:invalidate()和postInvalidate()的区别?
Q:了解哪些Drawable?适用场景?
Q:mipmap系列中xxxhdpi、xxhdpi、xhdpi、hdpi、mdpi和ldpi存在怎样的关系?
Q:dp、dpi、px的区别?
- px:像素,如分辨率1920x1080表示高为1920个像素、宽为1080个像素
- dpi:每英寸的像素点,如分辨率为1920x1080的手机尺寸为4.95英寸,则该手机DPI为(1920x1920+1080x1080)½/4.95≈445dpi
- dp:密度无关像素,是个相对值
Q:res目录和assets目录的区别?
- res/raw中的文件会被映射到R.java文件中,访问时可直接使用资源ID,不可以有目录结构
- assets文件夹下的文件不会被映射到R.java中,访问时需要AssetManager类,可以创建子文件夹
我本来是向码一下,当做自己的学习笔记来看呢,太麻烦了,浪费时间做重复工作,接下来的内容还是直接看小姐姐的网页吧。
问题总结在这里,本篇是上篇,下面还有中篇和下篇以及算法篇。码一下自己看自己学习,向大佬致敬。