一、概述
mysql分库分表一般有如下场景
垂直分表(将表分为主表和扩展表)
垂直分库(将表按业务归属到不同的库,如订单相关的放到订单库,用户相关的表放到用户库等,这也是我们常说的权限回收其中的一部分)
水平拆表(当数据库整体瓶颈还未到时,少量表到达性能瓶颈)
水平拆库 & 拆表(数据整体性能到达瓶颈,单一写入出现性能瓶颈)
其中1,2相对较容易实现,本文重点讲讲水平拆表和水平拆库,以及基于mybatis插件方式实现水平拆分方案落地。
二、水平拆表
在《聊一聊扩展字段设计》 一文中有讲解到基于KV水平存储扩展字段方案,这就是非常典型的可以水平分表的场景。主表和kv表是一对N关系,随着主表数据量增长,KV表最大N倍线性增长。
这里我们以分KV表水平拆分为场景
CREATE TABLE `kv` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`key` varchar(30) NOT NULL COMMENT '存储字段名',
`value` varchar(3000) NOT NULL DEFAULT '' COMMENT '存储value',
`create_time` timestamp NULL DEFAULT NULL COMMENT '创建时间',
`type` tinyint(4) NOT NULL DEFAULT '1' COMMENT '字段类型: 1: string , 2: json',
PRIMARY KEY (`id`,`name`),
KEY `idx_create_time` (`create_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='订单扩展字段KV表';
1. 确定shardingKey
对于kv扩展字段查询,只会根据id + key 或者 id 为条件的方式查询,所以这里我们可以按照id 分片即可
2. 确定拆分表数量
分512张表(实际场景具体分多少表还得根据字段增加的频次而定)
分表后表名为kv_000 ~ kv_511
id % 512 = 1 .... 分到 kv_001,
id % 512 = 2 .... 分到 kv_002
依次类推!
3. 水平分表思路
先看看未拆分前sql语句
- insert
insert into kv(id, key, value,create_time,type) value(1, "domain", "www.bytearch.com", "2020-05-17 00:00:00", 1);
- select
select id, key, value,create_time,type from kv where id = 1 and key = "domain";
我们可以通过动态更改sql语句表名,拆分后sql语句
- insert
insert into kv_001 (id, key, value,create_time,type) value(1, "domain", "www.bytearch.com", "2020-05-17 00:00:00", 1);
- select
select id, key, value,create_time,type from kv_001 where id = 1 and key = "domain";
水平分表相对比较容易,后面会讲到基于mybatis插件实现方案
三、水平拆库
场景:以下我们基于博客文章表分库场景来分析
目标:
分成1024张库, 000-511号库共用数据节点node1(一个数据节点保护一主多从数据源), 512~1023号库用数据节点node2
支持读写分离
表结构如下(节选部分字段):
CREATE TABLE IF NOT EXISTS `article` (
`id` bigint(20) NOT NULL COMMENT '文章id',
`user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '作者id',
`status` tinyint(4) NOT NULL DEFAULT '1' COMMENT '文章状态 -1: 删除 1:草稿 2:已发布' ,
`create_time` datetime DEFAULT NULL,
`update_time` datetime DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `idx_create_time` (`create_time`),
KEY `idx_user_id` (`user_id`),
KEY `idx_status` (`status`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT '订单信息表';
1)确定shardingKey
按照user_id sharding
2) 确定分库数量
假如分1024个库,按照user_id % 1024 hash
user_id % 1024 = 1 分到db_001库
user_id % 1024 = 2 分到db_002库
依次类推
3) 架构图如下
4) 性能线性增长
目前是2个节点,假如后期达到瓶颈,我们可以增加至4个节点
最多可以增加只1024个节点,性能线性增长
5) 非shardingKey查询问题
对于水平分表/分库后,非shardingKey查询首先得考虑到
- 基因法: 见《分布式唯一id生成器最佳实践》 通过主键id可以直接定位到对应库号
- 映射表法: 可以建一张mapping表关联,但是这样引入了额外的单点问题
- 冗余法: 相同数据按照另外一个字段冗余一张表
- nosql法: 将全量数据存到ES,查询ES
四、基于mybatis插件水平分库分表
基于mybatis分库分表,一般常用的一种是基于spring AOP方式, 另外一种基于mybatis插件。其实两种方式思路差不多。
基于mybatis分库得首先解决如下问题
-
- 如何根据shardingKey选择不同的数据源
-
- 在哪个阶段切换数据源
-
- 在哪个阶段 更改sql语句(也就是需要更改库名&表名, 解决了问题1和问题2,问题3就很容易解决了)
问题1: 使用Spring的AbstractRoutingDataSource进行数据源的动态切换,原理是使用ThreadLocal先存储数据源key,等需要的的时候获取。
问题2: 这个问题得先分析一下mybatis四大类和插件执行流程,也就是找出也就是分析Executor 和StatementHandler哪个在获取属于源之前执行
为了比较直观解决这个问题,我分别在Executor 和StatementHandler阶段2个拦截器
package com.bytearch.mybatis.sharding.plugin;
import lombok.extern.slf4j.Slf4j;
import org.apache.ibatis.executor.statement.StatementHandler;
import org.apache.ibatis.plugin.*;
import java.sql.Connection;
import java.util.Properties;
/**
* @author bytearch
*/
@Intercepts({
@Signature(type = StatementHandler.class,
method = "prepare",
args = {Connection.class, Integer.class})})
@Slf4j
public class StatementHandlerTestInterceptor implements Interceptor {
@Override
public Object intercept(Invocation invocation) throws Throwable {
log.info("statementHander执行阶段>>>>>>>");
return invocation.proceed();
}
@Override
public Object plugin(Object target) {
if (target instanceof StatementHandler) {
return Plugin.wrap(target, this);
}
return target;
}
@Override
public void setProperties(Properties properties) {
}
}
package com.bytearch.mybatis.sharding.plugin;
import lombok.extern.slf4j.Slf4j;
import org.apache.ibatis.executor.Executor;
import org.apache.ibatis.mapping.MappedStatement;
import org.apache.ibatis.plugin.*;
import org.apache.ibatis.session.ResultHandler;
import org.apache.ibatis.session.RowBounds;
import java.util.Properties;
/**
* @author bytearch
*/
@Intercepts(
{
@Signature(type = Executor.class, method = "update", args = {MappedStatement.class, Object.class}),
@Signature(type = Executor.class, method = "query", args = {MappedStatement.class, Object.class, RowBounds.class, ResultHandler.class}),
})
@Slf4j
public class ExecutorHandlerTestInterceptor implements Interceptor {
@Override
public Object intercept(Invocation invocation) throws Throwable {
log.info("Executor执行阶段 >>>>>>>>>>>");
return invocation.proceed();
}
@Override
public Object plugin(Object target) {
if (target instanceof Executor) {
return Plugin.wrap(target, this);
}
return target;
}
@Override
public void setProperties(Properties properties) {
}
}
实现动态数据源获取接口
package com.bytearch.mybatis.sharding.configuration;
import lombok.extern.slf4j.Slf4j;
import org.springframework.jdbc.datasource.lookup.AbstractRoutingDataSource;
/**
* @author yarw
*/
@Slf4j
public class DynamicDatasource extends AbstractRoutingDataSource {
@Override
protected Object determineCurrentLookupKey() {
log.info("[获取datasourceKey:{}]", DynamicDataSourceContextHolder.getDataSourceKey());
return DynamicDataSourceContextHolder.getDataSourceKey();
}
测试结果如下
由此可知,我们需要在Executor阶段 切换数据源
问题3: 可以在Executor切换完数据库完成之后, 更改sql, 或者在StatementHandler阶段更改sql
对于分库:
原始sql:
insert into article(id, uid, status,create_time,update_time) value(201333425976180992L, 1, 1, '2020-05-17 00:00:00', '2020-05-17 00:00:00')
目标sql:
insert into ba_test_001.article (id, user_id, status,create_time,update_time) value(201333425976180992L, 1, 1, '2020-05-17 00:00:00', '2020-05-17 00:00:00')
完整插件如下
package com.bytearch.mybatis.sharding.plugin;
import com.bytearch.mybatis.sharding.annotation.DB;
import com.bytearch.mybatis.sharding.annotation.ShardingBy;
import com.bytearch.mybatis.sharding.annotation.UseMaster;
import com.bytearch.mybatis.sharding.common.NodeNameEnum;
import com.bytearch.mybatis.sharding.configuration.DynamicDataSourceContextHolder;
import com.bytearch.mybatis.sharding.exception.ShardingException;
import com.bytearch.mybatis.sharding.strategy.IDatabaseShardingStrategy;
import com.bytearch.mybatis.sharding.strategy.IShardingStrategy;
import com.bytearch.mybatis.sharding.strategy.ITableShardingStrategy;
import com.bytearch.mybatis.sharding.strategy.ShardingStrategyUtils;
import lombok.extern.slf4j.Slf4j;
import org.apache.ibatis.executor.Executor;
import org.apache.ibatis.mapping.BoundSql;
import org.apache.ibatis.mapping.MappedStatement;
import org.apache.ibatis.mapping.SqlCommandType;
import org.apache.ibatis.mapping.SqlSource;
import org.apache.ibatis.plugin.*;
import org.apache.ibatis.session.ResultHandler;
import org.apache.ibatis.session.RowBounds;
import org.springframework.util.StringUtils;
import java.lang.annotation.Annotation;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.util.Arrays;
import java.util.Map;
import java.util.Properties;
/**
* @author bytearch
*/
@Intercepts(
{
@Signature(type = Executor.class, method = "update", args = {MappedStatement.class, Object.class}),
@Signature(type = Executor.class, method = "query", args = {MappedStatement.class, Object.class, RowBounds.class, ResultHandler.class}),
})
@Slf4j
public class ShardingInterceptor implements Interceptor {
@Override
public Object intercept(Invocation invocation) throws Throwable {
Object[] args = invocation.getArgs();
MappedStatement ms = (MappedStatement) args[0];
if (Arrays.asList(SqlCommandType.INSERT, SqlCommandType.UPDATE, SqlCommandType.DELETE, SqlCommandType.SELECT).contains(ms.getSqlCommandType())) {
// 读请求: 默认使用从库
// 写请求(INSERT,UPDATE,DELETE): 使用主库
boolean useMaster = !SqlCommandType.SELECT.equals(ms.getSqlCommandType());
DB DB = null;
String methodId = ms.getId();
String className = methodId.substring(0, methodId.lastIndexOf('.'));
String methodName = methodId.substring(methodId.lastIndexOf('.') + 1);
//是否使用了分库分表策略
Class clz = Class.forName(className);
Annotation dbAnno = clz.getAnnotation(DB.class);
if (dbAnno != null) {
DB = (DB) dbAnno;
}
if (DB != null) {
//方法是否使用了@UseMaster注解 @PartitionBy注解
String partitionName = null;
for (Method declaredMethod : clz.getDeclaredMethods()) {
if (!declaredMethod.getName().equals(methodName)) {
continue;
}
if (declaredMethod.getAnnotation(UseMaster.class) != null) {
useMaster = true;
}
ShardingBy shardingByAnno = declaredMethod.getAnnotation(ShardingBy.class);
if (shardingByAnno != null) {
partitionName = shardingByAnno.value();
if (DB == null) {
throw new ShardingException("error! must @DB on :{}", clz);
}
}
}
//记录sql是否需要改变
boolean sqlNeedChanged = false;
Object partitionKey = null;
String schema = DB.schema();
String tableName = DB.tableName();
//获取partition
Object pa = args[1];
if (pa instanceof Map) {
//params中获取partitionKey
Map paMap = (Map) pa;
if (!StringUtils.isEmpty(partitionName)) {
partitionKey = paMap.get(partitionName);
}
} else if (pa instanceof Object && partitionKey == null) {
//Bean对象中获取partitionKey
for (Field declaredField : pa.getClass().getDeclaredFields()) {
ShardingBy annotation = declaredField.getAnnotation(ShardingBy.class);
if (annotation != null) {
declaredField.setAccessible(true);
partitionKey = declaredField.get(pa);
}
}
}
if (partitionKey != null) {
log.info("获取到shardingKey:{}]", partitionKey);
//权重 分库 < 分表 < 分库分表(原则上同一Mapper策略只配置一种,如果配置多种依次覆盖)
//分库
IDatabaseShardingStrategy databaseShardingStrategy = ShardingStrategyUtils.getDatabaseShardingStrategy(DB);
if (databaseShardingStrategy != null) {
schema = databaseShardingStrategy.getSchemaName(DB.schema(), partitionKey);
databaseShardingStrategy.changeDatasourceByPartitionKey(partitionKey, useMaster);
sqlNeedChanged = true;
}
//分表
ITableShardingStrategy ITableShardingStrategy = ShardingStrategyUtils.getTableShardingStrategy(DB);
if (ITableShardingStrategy != null) {
tableName = ITableShardingStrategy.getTargetTable(DB.tableName(), partitionKey);
sqlNeedChanged = true;
NodeNameEnum nodeNameEnum = NodeNameEnum.valueOf(DB.schema());
if (nodeNameEnum != null) {
DynamicDataSourceContextHolder.useDataSourceByNodeNum(nodeNameEnum, useMaster);
}
}
//分库分表
IShardingStrategy shardingStategy = ShardingStrategyUtils.getShardingStategy(DB);
if (shardingStategy != null) {
schema = shardingStategy.getSchemaName(DB.schema(), partitionKey);
tableName = shardingStategy.getTargetTable(DB.tableName(), partitionKey);
databaseShardingStrategy.changeDatasourceByPartitionKey(partitionKey, useMaster);
sqlNeedChanged = true;
}
} else {
//不分库也不分表
NodeNameEnum nodeNameEnum = NodeNameEnum.valueOf(DB.schema());
if (nodeNameEnum != null) {
DynamicDataSourceContextHolder.useDataSourceByNodeNum(nodeNameEnum, useMaster);
}
}
if (sqlNeedChanged) {
BoundSql boundSql = ms.getBoundSql(pa);
String originSql = boundSql.getSql();
log.info("[原始SQL] sql:{}", originSql);
String sql = originSql.replaceAll(DB.tableName(), schema + '.' + tableName);
log.info("[更改SQL] sql:{}", sql);
BoundSql boundSqlNew = new BoundSql(ms.getConfiguration(), sql, boundSql.getParameterMappings(), boundSql.getParameterObject());
MappedStatement mappedStatement = copyFromMappedStatement(ms, new BoundSqlSqlSource(boundSqlNew));
args[0] = mappedStatement;
}
}
}
return invocation.proceed();
}
@Override
public Object plugin(Object target) {
if (target instanceof Executor) {
return Plugin.wrap(target, this);
}
return target;
}
@Override
public void setProperties(Properties properties) {
}
private MappedStatement copyFromMappedStatement(MappedStatement ms, SqlSource newSqlSource) {
MappedStatement.Builder builder = new MappedStatement.Builder(ms.getConfiguration(), ms.getId(), newSqlSource, ms.getSqlCommandType());
builder.resource(ms.getResource());
builder.fetchSize(ms.getFetchSize());
builder.statementType(ms.getStatementType());
builder.keyGenerator(ms.getKeyGenerator());
if (ms.getKeyProperties() != null && ms.getKeyProperties().length > 0) {
builder.keyProperty(ms.getKeyProperties()[0]);
}
builder.timeout(ms.getTimeout());
builder.parameterMap(ms.getParameterMap());
builder.resultMaps(ms.getResultMaps());
builder.resultSetType(ms.getResultSetType());
builder.cache(ms.getCache());
builder.flushCacheRequired(ms.isFlushCacheRequired());
builder.useCache(ms.isUseCache());
return builder.build();
}
public static class BoundSqlSqlSource implements SqlSource {
private BoundSql boundSql;
public BoundSqlSqlSource(BoundSql boundSql) {
this.boundSql = boundSql;
}
@Override
public BoundSql getBoundSql(Object parameterObject) {
return boundSql;
}
}
}
其中定义了三个注解
@useMaster 是否强制读主
@Target({ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
public @interface UseMaster {
}
@shardingBy 分片标识
/**
*
* @ShardingBy作用于方法 和 Bean属性 优先级 方法 > 属性
* @author yarw
*/
@Target({ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
public @interface ShardingBy {
/**
* 指定分片参数
* @return
*/
String value() default ShardingConstant.DEFAULT_PARTITION_KEY_NAME;
}
@DB 定义逻辑表名 库名以及分片策略
package com.bytearch.mybatis.sharding.annotation;
import com.bytearch.mybatis.sharding.strategy.IDatabaseShardingStrategy;
import com.bytearch.mybatis.sharding.strategy.IShardingStrategy;
import com.bytearch.mybatis.sharding.strategy.ITableShardingStrategy;
import com.bytearch.mybatis.sharding.strategy.impl.NotUseDatabaseShardingStrategy;
import com.bytearch.mybatis.sharding.strategy.impl.NotUseShardingStrategy;
import com.bytearch.mybatis.sharding.strategy.impl.NotUseTableShardingStrategy;
import java.lang.annotation.*;
/**
* @author yarw
*/
@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
public @interface DB {
/**
* 分表切分策略
*
* @return
*/
Class extends ITableShardingStrategy> tableShardingStrategy() default NotUseTableShardingStrategy.class;
/**
* 分库切分策略
*
* @return
*/
Class extends IDatabaseShardingStrategy> databaseShardingStrategy() default NotUseDatabaseShardingStrategy.class;
/**
* 分库&分表切分策略
* @return
*/
Class extends IShardingStrategy> shardingStrategy() default NotUseShardingStrategy.class;
/**
* 逻辑表名
*
* @return
*/
String tableName();
/**
* 逻辑库名
*
* @return
*/
String schema();
}
测试走一波
1)编写entity
package com.bytearch.mybatis.sharding.entity;
import java.util.Date;
import com.bytearch.mybatis.sharding.annotation.ShardingBy;
import lombok.Data;
@Data
public class Article {
/**
* 文章id
*/
private Long id;
/**
* 作者id
* 可以在此处通过注解指定shardingKey
*/
@ShardingBy
private Long userId;
/**
* 文章状态 -1: 删除 1:草稿 2:已发布
*/
private Byte status;
private Date createTime;
private Date updateTime;
}
- 编写mapper
/**
* @author yarw
*/
@DB(databaseShardingStrategy = LongHashDatabasePartitionStrategy.class, schema = "blog", tableName = "article")
@Mapper
public interface ArticleShardingMapper {
/**
* 也可以通过参数指定shardingKey参数
*/
@Select("select * from article where id = #{id}")
@ShardingBy("shardingKey")
Article selectById(@Param("id") Long id, @Param("shardingKey") Long shardingKey);
@Insert("insert into article (id, user_id, status,create_time,update_time) value(#{id}, #{userId}, #{status}, #{createTime}, #{updateTime})")
int insert(Article kv);
}
- 编写测试类
@Test
public void insertArticleTest() {
Article article = new Article();
Long userId = 1L;
article.setId(SeqIdUtil.nextId(userId));
article.setUserId(userId);
article.setStatus((byte)1);
article.setCreateTime(new Date());
article.setUpdateTime(new Date());
articleShardingMapper.insert(article);
}
@Test
public void selectArticleTest() {
Article article = articleShardingMapper.selectById(201364919411081472L, SeqIdUtil.decodeId(201364919411081472L).getExtraId());
System.out.println(article);
}
- 测试结果
Insert
select
以上顺利实现mysql分库,同样的道理实现同时分库分表也很容易实现。
此插件具体实现方案已开源: https://github.com/bytearch/mybatis-sharding
目录如下:
.
├── bytearch_article.sql
├── mybatis-sharding.iml
├── pom.xml
├── readme.md
├── sharding.sql
├── src
│ ├── main
│ │ ├── java
│ │ │ └── com
│ │ │ └── bytearch
│ │ │ └── mybatis
│ │ │ └── sharding
│ │ │ ├── ShardingApplication.java
│ │ │ ├── annotation
│ │ │ │ ├── DB.java
│ │ │ │ ├── ShardingBy.java //分片标识注解
│ │ │ │ └── UseMaster.java //强制读主注解
│ │ │ ├── common
│ │ │ │ ├── NodeNameEnum.java
│ │ │ │ └── ShardingConstant.java
│ │ │ ├── configuration
│ │ │ │ ├── DynamicDataSourceContextHolder.java
│ │ │ │ ├── DynamicDatasource.java
│ │ │ │ ├── NormalDateSourceConfig.java
│ │ │ │ ├── ShardingConfiguration.java
│ │ │ │ └── ShardingDateSourceConfig.java
│ │ │ ├── dao
│ │ │ │ ├── KVShardingMapper.java
│ │ │ │ └── KvShardingMapper.xml
│ │ │ ├── dto
│ │ │ │ ├── DataSourceKeyNodeDTO.java
│ │ │ │ └── DataSourceNodeDTO.java
│ │ │ ├── entity
│ │ │ │ └── Kv.java
│ │ │ ├── exception
│ │ │ │ └── ShardingException.java
│ │ │ ├── plugin //插件
│ │ │ │ ├── ShardingInterceptor.java
│ │ │ ├── sequence //唯一id生成器
│ │ │ │ ├── IdEntity.java
│ │ │ │ ├── IpUtil.java
│ │ │ │ └── SeqIdUtil.java
│ │ │ └── strategy //策略类
│ │ │ ├── IDatabaseShardingStrategy.java
│ │ │ ├── IShardingStrategy.java
│ │ │ ├── ITableShardingStrategy.java
│ │ │ ├── ShardingStrategyUtils.java
│ │ │ └── impl
│ │ │ ├── LongHashDatabasePartitionStrategy.java
│ │ │ ├── LongHashTableShardingStrategy.java
│ │ │ ├── NotUseDatabaseShardingStrategy.java
│ │ │ ├── NotUseShardingStrategy.java
│ │ │ └── NotUseTableShardingStrategy.java
│ │ └── resources
│ │ ├── application.yml
│ │ └── mybatis
│ │ └── mybatis-config.xml
│ └── test
│ └── java
│ └── com
│ └── bytearch
│ └── mybatis
│ └── sharding
│ └── DBApplicationTests.java
五、总结
mysql分库分表,首先得找到瓶颈在哪里(IO or CPU),是分库还是分表,分多少?不能为了分库分表而拆分。
原则上是尽量先垂直拆分 后 水平拆分。
以上基于mybatis插件分库分表是一种实现思路,还有很多不完善的地方,
例如:
- 目前sql是直接替换的,这里有很大隐患,
- 分库后,跨库事务的如何处理等等
以上仅供参考!有其它思路可以欢迎联系我一起交流.