- AI 大模型重塑软件开发流程的四点观察:跃迁/重构/变革/挑战
敖行客 Allthinker
Thinker说人工智能大模型
作为软件开发的从业者,笔者深刻感受到AI大模型对开发流程的颠覆性影响。从最初的代码补全工具到如今能够自主完成复杂任务的智能协作者,AI的角色转变正推动软件开发范式发生系统性变革。基于实际开发经验与行业案例,从四个维度,浅显讲述一下AI大模型重塑软件开发流程的观察。观察一:编码能力突破——从“助手”到“协作者”的技术跃迁核心变化:AI从“补全代码片段”进化为“自主构建完整系统”过去,AI在开发中的角
- go channel用法
三金C_C
gogolangchannel
介绍channel在Go中是一种专门用来在goroutine之间传递数据的类型安全的管道。你可以把它理解成:多个goroutine之间的**“传话筒”**,谁往通道里塞东西,另一个goroutine就能接收到。Go语言采用CSP(CommunicatingSequentialProcesses)模型,也就是鼓励:“不要通过共享内存来通信,而要通过通信来共享内存”也就是通过channel来传递数据,
- Llama改进之——RoPE旋转位置编码
愤怒的可乐
NLP项目实战#LLaMARoPE旋转位置编码
引言旋转位置编码(RotaryPositionEmbedding,RoPE)将绝对相对位置依赖纳入自注意力机制中,以增强Transformer架构的性能。目前很火的大模型LLaMA、QWen等都应用了旋转位置编码。之前在[论文笔记]ROFORMER中对旋转位置编码的原始论文进行了解析,重点推导了旋转位置编码的公式,本文侧重实现,同时尽量简化数学上的推理,详细推理可见最后的参考文章。复数与极坐标复数
- Llama改进之——分组查询注意力
愤怒的可乐
#NLP项目实战自然语言处理llama深度学习人工智能分组查询注意力旋转位置编码
引言今天介绍LLAMA2模型引入的关于注意力的改进——分组查询注意力(Grouped-queryattention,GQA)1。Transformer中的多头注意力在解码阶段来说是一个性能瓶颈。多查询注意力2通过共享单个key和value头,同时不减少query头来提升性能。多查询注意力可能导致质量下降和训练不稳定,因此常用的是分组查询注意力。然后我们结合上篇文章3探讨的旋转位置编码,将选择位置编
- Llama改进之——均方根层归一化RMSNorm
愤怒的可乐
NLP项目实战#llama
引言在学习完GPT2之后,从本文开始进入Llama模型系列。本文介绍Llama模型的改进之RMSNorm(均方根层归一化)。它是由RootMeanSquareLayerNormalization论文提出来的,可以参阅其论文笔记1。LayerNorm层归一化(LayerNorm)对Transformer等模型来说非常重要,它可以帮助稳定训练并提升模型收敛性。LayerNorm针对一个样本所有特征计算
- Llama改进之——SwiGLU激活函数
愤怒的可乐
#自然语言处理NLP项目实战llama
引言今天介绍LLAMA模型引入的关于激活函数的改进——SwiGLU1,该激活函数取得了不错的效果,得到了广泛地应用。SwiGLU是GLU的一种变体,其中包含了GLU和Swish激活函数。GLUGLU(GatedLinearUnits,门控线性单元)2引入了两个不同的线性层,其中一个首先经过sigmoid函数,其结果将和另一个线性层的输出进行逐元素相乘作为最终的输出:GLU(x,
- 强化学习RLHF详解
贝塔西塔
强化学习大模型人工智能深度学习机器学习算法语言模型
RLHF(ReinforcementLearningfromHumanFeedback)模型详解一、背景1.传统强化学习的局限性传统的强化学习(ReinforcementLearning,RL)依赖于预定义的奖励函数(RewardFunction),但在复杂任务(如自然语言生成、机器人控制)中,设计精确的奖励函数极为困难。例如:模糊目标:生成“高质量文本”难以量化,无法用简单的指标(如BLEU、R
- 强人工智能是否会诞生于现在的AI之中
一花·一叶
人工智能语言模型
为什么我认为当前AI方法无法实现真正的人工智能?随着大模型的发展日新月异,越来越多的人开始相信我们正在接近通用人工智能(AGI)。然而,作为一名人工智能领域的算法工程师,我反而越来越确信:现有的技术路径——以Transformer为核心的深度神经网络,可能已经达到了它的能力上限。我们或许正站在一个新时代的门槛上:真正的强人工智能将不会诞生于现有的范式中,而需要一条全新的算法路径。Transform
- 手把手从零打造 Llama3:解锁下一代预训练模型
会飞的Anthony
信息系统人工智能AIGC自然语言处理人工智能llama3AIGC
引言Llama3相较于Llama2,不仅在模型架构上做了显著优化,尤其是全局查询注意力机制(GQA)的引入,使得模型在大规模数据处理上表现更加出色。同时,Llama3采用了与GPT一致的tiktoken分词器,大幅提升了分词效率。本篇文章将带你从头构建Llama3预训练流程,深入了解其关键细节和实现方式,让你掌握这一下一代模型的核心技术。1.启动训练脚本在这一步中,我们将实现Llama3的预训练框
- 从零实现Llama3:深入解析Transformer架构与实现细节
祁婉菲Flora
从零实现Llama3:深入解析Transformer架构与实现细节llama3-from-scratchllama3一次实现一个矩阵乘法。项目地址:https://gitcode.com/gh_mirrors/ll/llama3-from-scratch引言本文将深入探讨如何从零开始实现Llama3语言模型。我们将从最基本的张量操作开始,逐步构建完整的Transformer架构。通过这个过程,读者
- PyTorch-Llama: 从零开始实现LLaMA 2模型教程
乔昕连
PyTorch-Llama:从零开始实现LLaMA2模型教程pytorch-llamaLLaMA2implementedfromscratchinPyTorch项目地址:https://gitcode.com/gh_mirrors/py/pytorch-llama1.项目介绍PyTorch-Llama是一个在PyTorch平台上完全从零开始实现的LLaMA2模型仓库。该模型是一个强大的自回归语言模
- 如何训练一个 Reward Model:RLHF 的核心组件详解
茫茫人海一粒沙
深度学习人工智能强化学习
RewardModel(奖励模型)是RLHF的核心,决定了模型“觉得人类偏好什么”的依据。本文将系统介绍如何从零开始训练一个rewardmodel,包括数据准备、模型结构、损失函数、训练方法与注意事项。什么是RewardModel?RewardModel(RM)是一个评分器:它输入一个文本(通常是prompt+模型回答),输出一个实数分值(reward),表示这个回答的“人类偏好程度”。它不是分类
- 【Rust日报】Rust稳定2024版本将于 2025年2月20日发布
fastembed-rs-AI嵌入库FastEmbed的Rust实现,提供了快速的文本嵌入、图像嵌入和候选项重新排序功能。它具有以下主要特性:支持同步使用,无需依赖Tokio。使用@pykeio/ort进行高性能的ONNX推理。使用@huggingface/tokenizers进行快速编码。支持使用@rayon-rs/rayon进行批量嵌入生成和并行计算。默认模型是FlagEmbedding,在M
- 昇腾NPU节点软件版本检查与升级方法
一、问题背景当我们需要在节点部署DeepSeek大模型时,需要检查昇腾云配套的版本驱动和固件版本,如果发现节点版本不配套建议升级到配套版本。检查方法:npu-smiinfo-tboard-i1|egrep-i"software|firmware"二、升级方法需要注意的是,一定要先升级固件,再升级驱动;如果需要降级版本,流程与升级一样。一般而言,固件包是带有firmware关键字,驱动包带有dirv
- 利用人名语言分类案例演示RNN、LSTM和GRU的区别(基于PyTorch)
.30-06Springfield
rnnlstmgru分类人工智能pythonpytorch
文章目录一、程序结构1.1程序整体结构1.2各模块功能关系流程图二、数据预处理模块详解2.1定义字符集和语言类别2.2读取数据2.3人名转换为one-hot编码张量2.4自定义数据集类2.5数据加载器三、模型定义模块详解3.1RNN模型3.2LSTM模型3.3GRU模型四、模型训练与测试模块详解4.1测试模型基本功能4.2模型训练主函数五、结果可视化与对比模块详解六、模型预测模块详解七、案例结果分
- YOLOv8 轴承缺陷检测 使用YOLOv8进行训练、评估和可视化预测结果 包含1440张图片的轴承缺陷检测数据集 YOLO格式或XML格式
OICQQ67658008
YOLOxml深度学习轴承缺陷数据检测算法人工智能
轴承缺陷检测4类1440张names:[‘aocao’,‘aoxian’,‘cashang’,‘huahen’]名称::[‘凹槽’,‘凹陷’,‘卡伤’,‘划痕’]共1440张,8:1:1比例划分train:1152张,val:144张,test:144张标注文件为YOLO适用的txt格式或xml格式。可以直接用于模型训练。YOLOv8轴承缺陷检测importosimporttorchfromIPy
- Flask实现MTV分层
不会吃萝卜的兔子
flaskflask分层flaskMTV分层
版本python3.6flask1.0.2每个版本的路径可能不同,但结构大体一样步骤1.简化入口文件run.pyfromflaskdemoimportappapp.run(host="127.0.0.1",port=80)2.配置文件config.pyDEBUG=False3.模型文件modes.py我的模型文件没有写,你也设置多个model放在一个文件夹下,注意修改路径4.视图文件views.p
- 【Agent实战】用“前置编码器+LLM”复刻ChatGPT附件功能
kakaZhui
大模型Agent入门与代码实战chatgpt人工智能LLMAgentAIGCDeepSeek
1.引言:多模态LLM解耦原生多模态LLM将多种模态的处理能力“内化”于一个庞大的模型中,是技术的前沿。而我们这里讨论的“前置编码器+LLM”方案,则是一种解耦的设计哲学:LLM专注于语言:让强大的文本LLM继续做它最擅长的事情——理解和生成高质量的文本、进行逻辑推理和遵循复杂指令。前置编码器专注于转换:为每种文件类型构建或调用专门的、最优的工具(模型或库)来将其转换为高质量的文本表示。这种方案的
- 基于SpringBoot和Leaflet的区域冲突可视化系统(2025企业级实战方案)
知识产权13937636601
计算机springboot后端java
摘要在全球地缘冲突与应急事件频发的2025年,区域态势可视化系统成为政府及企业的决策刚需。本文提出基于SpringBoot3.2后端与Leaflet1.9.5前端的冲突可视化解决方案,融合多源异构数据(卫星影像、舆情热力、设施状态)构建动态冲突图谱。关键技术突破包括:矢量切片实时聚合(支持100万+目标呈现)、多维度冲突因子权重模型、态势推演沙盘,并在某跨国能源集团实测中实现风险识别效率提升8倍,
- 解密GPT工作原理:Transformer架构详解与自注意力机制剖析
AI智能应用
gpttransformer架构ai
解密GPT工作原理:Transformer架构详解与自注意力机制剖析关键词:GPT、Transformer、自注意力机制、神经网络、语言模型、深度学习、人工智能摘要:本文将深入浅出地解析GPT模型的核心架构——Transformer,重点剖析其革命性的自注意力机制。我们将从基本概念出发,通过生活化的比喻解释复杂的技术原理,并用Python代码示例展示实现细节,最后探讨这一技术的应用场景和未来发展方
- ChatGPT、DeepSeek等大语言模型技术教程
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- synchronized的介绍与使用
骑牛小道士
java
synchronizedsynchronized的介绍synchronized的使用方式修饰实例方法修饰静态方法修饰代码块synchronized底层实现原理synchronized关键特性synchronized注意事项synchronized经典使用样例懒加载单例模式的双重检查锁生产者-消费者模型synchronized的介绍在多个线程执行任务时候,会存在资源竞争和数据不一致问题资源竞争:比如
- 【基于C# + HALCON的工业视系统开发实战】十七、航空级精度!涡轮叶片三维型面检测:激光扫描与CAD模型比对技术
AI_DL_CODE
c#halcon三维检测涡轮叶片点云配准型面偏差激光扫描
摘要:涡轮叶片是航空发动机的核心部件,其型面精度直接影响发动机效率与安全性。传统三坐标测量存在效率低(单叶片需40分钟)、覆盖率不足(仅检测关键截面)等问题。本文基于C#.NETCore6与HALCON24.11,构建三维型面检测系统:通过激光线扫描(每秒2000线)获取百万级点云,经MLS滤波降噪(保留0.03mm细节)与快速采样(0.1mm间隔)优化数据;采用ICP算法实现点云与CAD模型配准
- G DOM 操作.js
前言:DOM(文档对象模型)操作是实现动态交互的关键技术。通过DOM操作,我们可以获取、修改网页元素,为用户提供了一个丰富多彩的交互体验。目录一、DOM操作的初体验认识元素获取二、DOM操作的进阶元素内容的修改三、DOM操作的高阶元素样式的动态变化四、DOM操作的巅峰元素的添加、删除与事件处理五、DOM操作的奥秘元素遍历与家族关系六、DOM操作的终极挑战性能优化与复杂交互总结一、DOM操作的初体验
- AI大模型的2种模型能力Function call 和ReAct
DeepSeek-大模型系统教程
人工智能react.js前端gitai语言模型
近年来,随着AI大模型的快速发展,如何让这些模型更好地与现实世界交互成为了一个重要课题。FunctionCall和ReAct作为两种重要的模型能力,为大模型提供了更强大的工具调用和任务执行能力。我们将深入探讨这两种能力的背景、原理、应用场景以及它们之间的对比。帮助你深入了解他们的价值。01背景介绍AI大模型(如GPT-4、PaLM等)在自然语言处理、文本生成等任务中表现出色,但它们的能力往往局限于
- DDD领域驱动设计深度解析
目录DDD领域驱动设计深度解析DDD凝聚了软件工程的智慧DDD领域驱动设计的历史什么是领域Domain领域驱动设计领域驱动设计几大原则详解领域驱动模型的概念领域驱动设计的挑战DDD领域驱动设计深度解析DDD凝聚了软件工程的智慧许多人对微服务设计中经常提及的DDD非常推崇,觉得这是最新的架构设计趋势和解决微服务业务划分的终极方法。实际上,DDD概念最早在2004年就提出来了,微服务的前身SOA的概念
- 【openAI库】Python语言openAI库详解:从入门到精通(从0到1手把手教程)
Java八股文
python人工智能开发语言
在人工智能(AI)领域,OpenAI无疑是全球最受瞩目的机构之一。它推出的GPT系列模型、DALL·E等创新技术,正在深刻改变各行各业。作为Python开发者,我们该如何快速上手并高效利用OpenAI的API,成为了提升个人竞争力的关键。本文将带你从零开始,深入解析Python语言中的openAI库,助你掌握AI开发的核心工具,成为AI领域的专家。一、什么是openAI库?它能为开发者带来什么?1
- LLM大模型命名规则与部署硬件实践手册
文章目录一、理论基础:从信息编码到系统设计1.1命名系统的信息论基础1.2硬件架构与模型运行的关系1.3量化技术的数学原理二、国际主流模型命名规则深度解析2.1OpenAI:极简主义与功能导向2.2AnthropicClaude:诗意命名的技术内涵2.3GoogleGemini:统一品牌下的分层架构2.4MetaLlama:开源社区的透明化命名三、国内主流模型命名规则与文化内涵3.1百度文心:知识
- 理想运算放大器的神话与现实:若完美存在,电子世界将如何颠覆?
理想运算放大器(IdealOperationalAmplifier)是电子工程教材中的“完美模型”,它定义了模拟电路设计的理论基石。但若这种完美器件真实存在,整个电子产业将被彻底重构——本章将揭示理想运放的深层特性,并推演其可能引发的技术革命。一、理想运算放大器的终极定义1.1核心特性矩阵理想运放需同时满足以下五个极限条件:开环增益:AOL=∞A_{OL}=\inftyAOL=∞输入阻抗:Zin=
- 世界人工智能大会在即,中国AI布局展现多重深意
未来智慧谷
人工智能世界人工智能大会(WAIC)
2025年世界人工智能大会(WAIC)将于7月26日至28日在上海举行。本次大会以“智能时代同球共济”为主题,展览面积首次突破7万平方米,汇聚了来自30余个国家和地区的1200余位嘉宾,其中包括12位图灵奖、诺贝尔奖得主及80余位中外院士。这一全球性平台的搭建,揭示了中国在人工智能领域深化发展的战略路径。技术展示:从模型开源到终端落地本届大会将呈现3000余项前沿展品,涵盖40余款大模型、60余款
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">