- [论文阅读] 软件工程 | 需求工程中领域知识研究:系统映射与创新突破
张较瘦_
前沿技术论文阅读软件工程
需求工程中领域知识研究:系统映射与创新突破论文信息DomainKnowledgeinRequirementsEngineering:ASystematicMappingStudyarXiv:2506.20754DomainKnowledgeinRequirementsEngineering:ASystematicMappingStudyMarinaAraújo,JúliaAraújo,RomeuO
- 论文阅读:2025 arxiv Qwen3 Technical Report
https://arxiv.org/pdf/2505.09388https://www.doubao.com/chat/9918384373236738文章目录论文翻译Qwen3技术报告摘要1引言论文翻译Qwen3技术报告Qwen团队摘要在这项工作中,我们介绍了Qwen模型家族的最新版本Qwen3。Qwen3包含一系列大型语言模型(LLM),旨在提升性能、效率和多语言能力。Qwen3系列包括密集型
- [论文阅读] 软件工程 | 探索软件生态系统中的开发者体验关键因素
探索软件生态系统中的开发者体验关键因素:从研究到实践引文格式@article{Zacarias2025,title={ExploringDeveloperExperienceFactorsinSoftwareEcosystems},author={Zacarias,RodrigoOliveiraandAntunes,L{\'e}oCarvalhoRamosandBarros,M{\'a}rciod
- Fast Image Deconvolution using Hyper-Laplacian Priors论文阅读
青铜锁00
#退化论文阅读论文阅读图像处理
FastImageDeconvolutionusingHyper-LaplacianPriors1.论文的研究目标与实际意义2.论文的创新方法2.1核心框架:交替最小化(AlternatingMinimization)2.2x子问题:频域FFT加速2.3w子问题:高效求解的核心创新2.3.1问题形式2.3.2查找表法(LUT)2.3.3解析解法(特定α\alphaα)2.3.4通用α\alphaα
- [论文阅读] 人工智能 + 软件工程 | AI 与敏捷开发的破局之路:从挫败到成功的工作坊纪实
张较瘦_
前沿技术论文阅读人工智能软件工程
AI与敏捷开发的破局之路:从挫败到成功的工作坊纪实论文信息arXiv:2506.20159AIandAgileSoftwareDevelopment:FromFrustrationtoSuccess–XP2025WorkshopSummaryTomasHerda,VictoriaPichler,ZheyingZhang,PekkaAbrahamsson,GeirK.HanssenSubjects:
- Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model 论文阅读
钟屿
论文阅读人工智能深度学习学习图像处理计算机视觉
Diff-Retinex:用生成式扩散模型重新思考低光照图像增强摘要本文中,我们重新思考了低光照图像增强任务,并提出了一种物理可解释的生成式扩散模型,称为Diff-Retinex。我们的目标是整合物理模型和生成网络的优点。此外,我们希望通过生成网络补充甚至推断低光照图像中缺失的信息。因此,Diff-Retinex将低光照图像增强问题表述为Retinex分解和条件图像生成。在Retinex分解中,我
- 【论文阅读】人工智能在直升机航空电子系统中的应用
肥鼠路易
论文阅读人工智能航空电子系统应用
人工智能在直升机航空电子系统中的应用论文摘要文章结构参考文献论文摘要论文摘要:在现代战争形势日趋信息化、智能化的背景下,将人工智能应用于武器装备已经是大势所趋。针对直升机飞行任务的特征,对其发展状况进行了描述,并对其作业能力进行了分析,探索了人工智能技术在直升机航电系统中的应用方向,为推进人工智能在直升机上的转化与应用奠定基础。通过对国外先进直升机智能技术的运用现状及对其作业能力的要求进行分析,探
- [论文阅读] 人工智能+软件工程 | 用大语言模型架起软件需求形式化的桥梁
张较瘦_
前沿技术人工智能论文阅读软件工程
用大语言模型架起软件需求形式化的桥梁:一篇ACM调查草案的深度解读论文信息arXiv:2506.14627ACMSurveyDraftonFormalisingSoftwareRequirementswithLargeLanguageModelsArshadBeg,DiarmuidO’Donoghue,RosemaryMonahanComments:22pages.6summarytablesSu
- Reti-Diff: Illumination Degradation Image Restoration with Retinex-based Latent Diffusion Model论文阅读
青铜锁00
深度学习论文阅读#退化论文阅读
Reti-Diff:IlluminationDegradationImageRestorationwithRetinex-basedLatentDiffusionModel1.研究目标与实际意义1.1研究目标1.2实际意义2.创新方法与模型设计2.1整体框架2.2RetinexPriorExtraction(RPE)模块2.2.1Retinex分解2.2.2先验压缩2.3Retinex-guide
- SIMPL论文阅读
ZHANG8023ZHEN
论文阅读
论文链接:https://arxiv.org/pdf/2402.02519文章还没细看,但主要贡献点应该是SymmetricFusionTransformer和Bezier-basedMotionDecoder.对Bezier-basedMotionDecoder比较感兴趣,之后对这块细看一下
- 【论文阅读笔记】《CodeS: Towards Building Open-source Language Models for Text-to-SQL 》
柠石榴
text2sql论文论文阅读笔记语言模型
文章目录一、论文基本信息1.文章标题2.所属刊物/会议3.发表年份4.作者列表5.发表单位二、摘要三、解决问题四、创新点五、自己的见解和感想六、研究背景七、研究方法模型实验数据评估指标八、总结九、相关重要文献一、论文基本信息1.文章标题CodeS:TowardsBuildingOpen-sourceLanguageModelsforText-to-SQL2.所属刊物/会议未明确标注(会议缩写为“C
- agentformer论文阅读
ZHANG8023ZHEN
论文阅读
参考了这篇博文:https://zhuanlan.zhihu.com/p/512764984主要有这几个部分a.map_encoderi.对地图进行CNNb.ContextEncoderi.timeencoder–将时间信息用transformer和positionemb进行融合,加入到特征中ii.agent-awareattention–self和selfattentionother和other
- 【论文阅读】DynamicControl :一种新的controlnet多条件控制方法
prinTao
pytorchDiffusion论文阅读
背景现有方法要么处理条件效率低下,要么使用固定数量的条件,这并不能完全解决多个条件的复杂性及其潜在冲突。这强调了需要创新方法来有效管理多种条件,以实现更可靠和详细的图像合成。为了解决这个问题,我们提出了一个新的框架DynamicControl,它支持不同控制信号的动态组合,允许自适应选择不同数量和类型的条件。本文方法从一个双循环控制器开始,它通过利用预先训练的条件生成模型和判别模型为所有输入条件生
- 论文阅读:2018 arxiv CrowdHuman: A Benchmark for Detecting Human in a Crowd
CSPhD-winston-杨帆
论文阅读
https://www.doubao.com/chat/9226473480559618https://arxiv.org/pdf/1805.00123CrowdHuman:ABenchmarkforDetectingHumaninaCrowd文章目录论文翻译CrowdHuman:用于检测人群中人体的基准摘要1.引言2.相关工作2.1.人体检测数据集2.2.人体检测框架。论文翻译CrowdHuma
- 论文阅读:arxiv 2025 OThink-R1: Intrinsic Fast/Slow Thinking Mode Switching for Over-Reasoning Mitigation
CSPhD-winston-杨帆
论文阅读
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328https://www.doubao.com/chat/8815924393371650https://arxiv.org/pdf/2506.02397#page=17.09OThink文章目录速览研究背景与问题核心思路与方法实验结果结论与意义速览这篇论文聚焦于
- 论文阅读:arxiv 2025 Not All Tokens Are What You Need In Thinking
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328https://arxiv.org/pdf/2505.17827https://www.doubao.com/chat/8814790364572162文章目录速览研究背景提出的解决方案:条件token选择(CTS)实验结果核心贡献研究局限总结速览这篇论文主要探
- [论文阅读]PIDNet: A Real-time Semantic Segmentation Network Inspired by PID Controllers
颜笑晏晏
论文阅读
1.摘要双分支网络结构已显示出其对实时语义分割任务的效率性和有效性。然而,低级细节和高级语义的直接融合将导致细节特征容易被周围上下文信息淹没,即本文中的超调(overshoot),这限制了现有两个分支模型的准确性的提高。在本文中,我们在卷积神经网络(CNN)和比例积分微分(PID)控制器之间架起了桥梁,并揭示了双分支网络只是一个比例积分(PI)控制器,当然也会存在类似的超调问题。为了解决这个问题,
- [论文阅读] 人工智能+软件工程 | 用 LLM + 静态代码分析自动化提升代码质量
张较瘦_
前沿技术论文阅读人工智能软件工程
用LLM+静态代码分析自动化提升代码质量论文信息AugmentingLargeLanguageModelswithStaticCodeAnalysisforAutomatedCodeQualityImprovements@article{abtahi2025augmenting,title={AugmentingLargeLanguageModelswithStaticCodeAnalysisfo
- 经典论文阅读《A Framework for Unifying Reordering Transformations》《统一重排序变换的框架》
好好学习啊天天向上
自动性能优化
1)摘要我们提出了一个用于统一迭代重排序变换的框架,这些变换包括循环交换、循环分布、倾斜、分块、索引集拆分和语句重排序。该框架基于这样一种思想:变换可以表示为将原始迭代空间映射到新迭代空间的调度。框架旨在为变换提供一种统一的表示和推理方式。作为框架的一部分,我们提供了辅助构建和使用调度的算法,特别是用于检验调度合法性、对齐调度以及为调度生成优化代码的算法。2)优化编译器会对语句的迭代进行重新排序,
- [论文阅读] 系统架构 | 零售 IT 中的微服务与实时处理:开源工具链与部署策略综述
张较瘦_
前沿技术论文阅读大数据零售
零售IT中的微服务与实时处理:开源工具链与部署策略综述论文信息MicroservicesandReal-TimeProcessinginRetailIT:AReviewofOpen-SourceToolchainsandDeploymentStrategiesAaditaaVashisht(DepartmentofInformationScienceandEngineering,RVCollege
- [论文阅读]人工智能 | CoMemo:给大视觉语言模型装个“图像记忆”
张较瘦_
前沿技术人工智能论文阅读语言模型
【论文速览】CoMemo:给大视觉语言模型装个“图像记忆”论文信息Liu,S.,Su,W.,Zhu,X.,Wang,W.,&Dai,J.(2025).CoMemo:LVLMsNeedImageContextwithImageMemory.arXivpreprintarXiv:2506.06279.一、研究背景:当LVLMs遇到“视觉健忘症”想象一下,你在阅读一本图文并茂的小说时,随着文字篇幅越来越
- [论文阅读] 人工智能+软件工程 | 结对编程中的知识转移新图景
张较瘦_
前沿技术人工智能软件工程结对编程
当AI成为编程搭档:结对编程中的知识转移新图景论文信息论文标题:FromDeveloperPairstoAICopilots:AComparativeStudyonKnowledgeTransfer(从开发者结对到AI副驾驶:知识转移的对比研究)作者及机构:AlisaWelter等来自德国萨尔兰大学,ChristofTinnes同时隶属于西门子公司发表平台:arXiv预印本平台发表时间:2025年
- 【论文阅读笔记】HaDes幻觉检测benchmark
zsq
论文分享论文阅读笔记NLP大语言模型幻觉
0论文信息题目:AToken-levelReference-freeHallucinationDetectionBenchmarkforFree-formTextGeneration作者:TianyuLiu,YizheZhang,ChrisBrockett,YiMao,ZhifangSui,WeizhuChen,BillDolan会议:ACL,2022链接:https://arxiv.org/ab
- 论文阅读:Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Ef
clvsit
RAG论文阅读LLM
检索增强生成(RAG)技术利用大型语言模型(LLM)的上下文学习能力,生成更准确、更相关的响应。RAG框架起源于简单的“检索-阅读”方法,现已发展成为高度灵活的模块化范式。其中一个关键组件——查询重写模块,通过生成搜索友好的查询来增强知识检索。这种方法能使输入问题与知识库更紧密地结合起来。作者的研究发现了将QueryRewriter模块增强为QueryRewriter+的机会,即通过生成多个查询来
- 论文阅读:HySCDG生成式数据处理流程
论文地址:TheChangeYouWantToDetect:SemanticChangeDetectionInEarthObservationWithHybridDataGenerationAbstract摘要内容介绍问题背景“Bi-temporalchangedetectionatscalebasedonVeryHighResolution(VHR)imagesiscrucialforEarth
- [论文阅读] 人工智能 | 搜索增强LLMs的用户偏好与性能分析
张较瘦_
前沿技术人工智能论文阅读
【论文解读】SearchArena:搜索增强LLMs的用户偏好与性能分析论文信息作者:MihranMiroyan,Tsung-HanWu,LoganKing等标题:SearchArena:AnalyzingSearch-AugmentedLLMs来源:arXivpreprintarXiv:2506.05334v1,2025一、研究背景:当LLMs需要“上网查资料”时,我们如何评估它?想象你在问AI
- [论文阅读] 人工智能 | 如何快速检测LLM生成的代码?这篇论文提出了一个巧妙的方法
张较瘦_
前沿技术人工智能论文阅读
如何快速检测LLM生成的代码?这篇论文提出了一个巧妙的方法论文引文格式@misc{ashkenazi2025zero,title={Zero-ShotDetectionofLLM-GeneratedCodeviaApproximatedTaskConditioning},author={MaorAshkenaziandOfirBrennerandTalFurmanShohetandEranTrei
- [论文阅读] 人工智能+软件工程 | 理解GitGoodBench:评估AI代理在Git中表现的新基准
张较瘦_
前沿技术论文阅读人工智能软件工程
理解GitGoodBench:评估AI代理在Git中表现的新基准论文信息GitGoodBench:ANovelBenchmarkForEvaluatingAgenticPerformanceOnGitTobiasLindenbauer,EgorBogomolov,YaroslavZharovCiteas:arXiv:2505.22583[cs.SE]研究背景:当AI走进开发者的协作工具箱在软件开发
- [论文阅读] 人工智能+软件工程(软件测试) | 当大语言模型遇上APP测试:SCENGEN如何让手机应用更靠谱
张较瘦_
前沿技术人工智能论文阅读软件工程
当大语言模型遇上APP测试:SCENGEN如何让手机应用更靠谱?一、论文基础信息论文标题:LLM-GuidedScenario-basedGUITesting(《大语言模型引导的基于场景的GUI测试》)作者及机构:ShengchengYu等(德国慕尼黑工业大学、南京大学、同济大学等)发表来源:IEEETransactionsonSoftwareEngineering(IEEE软件工程汇刊)发表时间
- [论文阅读] 人工智能+软件工程 | 用大模型优化软件性能
张较瘦_
前沿技术论文阅读人工智能软件工程
用大模型优化软件性能?这篇论文让代码跑出新速度!arXiv:2506.01249SysLLMatic:LargeLanguageModelsareSoftwareSystemOptimizersHuiyunPeng,ArjunGupte,RyanHasler,NicholasJohnEliopoulos,Chien-ChouHo,RishiMantri,LeoDeng,KonstantinLäuf
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$