r语言 相关性作图_R语言做相关性分析

衡量随机变量相关性的方法主要有三种:pearson相关系数,spearman相关系数,kendall相关系数:

1.       pearson相关系数,亦即皮尔逊相关系数

pearson相关系数用来衡量两个随机变量之间的相关性

R语言中求两个随机变量pearson相关系数的函数:

1//赋予a,b向量值

2a

3b

4

5//计算pearson相关系数

6cor.test(a,b,method="pearson")

结果

Pearson's product-moment correlation

data:  a and b

t = 5.1962, df = 1, p-value = 0.121

alternative hypothesis: true correlation is not equal to 0

sample estimates:

cor

0.9819805

总结

P=0.121, cor=0.9819805

2.       spearman相关系数,亦即秩相关系数

spearman和kendall都是等级相关系数,亦即其值与两个相关变量的具体值无关,而仅仅与其值之间的大小关系有关。

spearman相关系数,亦即秩相关系数,根据随机变量的等级而不是其原始值衡量相关性的一种方法。

spearman相关系数的计算可以由计算pearson系数的方法,只需要把原随机变量中的原始数据替换成其在随机变量中的等级顺序即可:

(1,10,100,101)替换成(1,2,3,4

你可能感兴趣的:(r语言,相关性作图)