- 【RAG面试题】如何获取准确的语义表示
目录回答模板语义表示是干什么的?如何获取准确语义表示的关键步骤?1.选择合适的Embedding模型2.正确的文本预处理与切分3.文本清洗与标准化4.构建合理的向量库5.检索质量验证与优化详细知识点覆盖面试回答技巧回答模板在RAG中,准确的语义表示直接影响检索相关性。通常会从以下几方面确保语义表示准确:选择高质量的嵌入模型,如bge-m3或text-embedding-v1;正确的预处理和切分:采
- 基础RAG实现,最佳入门选择(七)
人工智能
增强型RAG系统的查询转换采用三种查询转换技术,以提高RAG系统中的检索性能,而无需依赖于像LangChain这样的专门库。通过修改用户查询,我们可以显著提高检索信息的相关性和全面性。关键转换技术1.查询重写:使查询更加具体和详细,以提高搜索精度。2.退步提示:生成更广泛的查询以检索有用的上下文信息。3.子查询分解:将复杂的查询分解成更简单的组件进行全面检索。具体代码实现查询变换相关函数查询重写d
- 大模型——Dify:知识库与外部知识库
不二人生
大模型人工智能大模型dify
Dify:知识库与外部知识库相比于AI大模型内置的静态预训练数据,知识库中的内容能够实时更新,确保LLM可以访问到最新的信息,避免因信息过时或遗漏而产生的问题。知识库与文档开发者可以通过此方式确保LLM不仅仅依赖于训练数据中的知识,还能够处理来自实时文档和数据库的动态数据,从而提高回答的准确性和相关性。https://docs.dify.ai/zh-hans/guides/knowledge-ba
- 百度算法逻辑的实用技巧指南
科技苑
百度
一、明确核心:百度算法关注什么?百度搜索引擎的本质是“为用户提供最有价值的内容”,其算法(如绿萝、飓风、细雨算法等)主要考核:1.内容质量:原创性、专业性、解决用户需求的能力;2.网站权威性:域名年龄、行业影响力、外部链接质量;3.用户体验:页面加载速度、移动端适配、导航易用性;4.相关性:关键词与内容的匹配度、页面结构合理性。二、基础优化:网站结构与技术合规1.搭建搜索引擎友好的网站结构-URL
- R 语言中的判断语句
lsx202406
开发语言
R语言中的判断语句在R语言编程中,判断语句是执行条件逻辑的基础。它们允许程序根据特定的条件执行不同的代码块。本文将深入探讨R语言中的几种常见判断语句,包括if语句、if-else语句和switch语句,并探讨它们的用法和场景。1.if语句if语句是R语言中最基本的条件判断结构。它的基本形式如下:if(条件){#条件为真时执行的代码块}当条件为真时,R会执行大括号内的代码块。如果条件为假,则不会执行
- 从0开始学习R语言--Day31--概率图模型
Chef_Chen
学习
在探究变量之间的相关性时,由于并不是每次分析数据时所用的样本集都能囊括所有的情况,所以单纯从样本集去下判断会有武断的嫌疑;同样的,我们有时候也想要在数据样本不够全面时就能对结果有个大概的了解。例如医生在给患者做诊断时,有些检查需要耗费的时间很久,但仅仅凭借一些其他的症状,他就可以对病人患某种病有个大概的猜想,从而先做出一些措施来降低风险,毕竟等到疾病真正发生时可能会来不及。概率图模型便是能够同时进
- 机器学习专栏(13):数据探索三重奏——从地理热力图到特征工程的财富密码
Sonal_Lynn
人工智能专题机器学习python人工智能深度学习算法开发语言
目录导言:当数据点连成黄金海岸线一、地理可视化:数据中的加州淘金热1.1基础地理散点图1.2高密度区域透视术二、相关性解密:数字背后的财富公式2.1皮尔逊相关系数矩阵2.2非线性关系发现术三、特征炼金术:创造新的财富密码3.1特征组合公式库3.2相关性进化史四、异常数据猎手:揪出数据中的"叛徒"4.1价格天花板检测4.2时空异常检测五、工业级探索工具箱5.1自动化数据透视5.2探索流程checkl
- 数据增强之OpenCV(cv2)
fsoule
数据增强opencv人工智能计算机视觉
cv2是一个常用的计算机视觉库,全名为OpenCV(OpenSourceComputerVisionLibrary)。它提供了丰富的图像处理和计算机视觉相关的函数和工具,可以用于加载、处理、分析和操作图像和视频数据。在使用cv2库之前,我们需要通过pip或者conda安装cv2,然后在代码中导入cv2库。importcv2下面介绍一些cv2库中常用的功能:1.加载和显示图像image_path="
- Word2Vec 原理是什么
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonword2vec人工智能自然语言处理
Word2Vec原理是什么一、核心概念:从词语到向量的语义映射Word2Vec是2013年由Google提出的词嵌入(WordEmbedding)模型,其核心目标是将自然语言中的词语转换为稠密的连续向量(词向量),使向量空间中的距离能反映词语的语义相关性。本质:通过神经网络学习词语的分布式表示(DistributedRepresentation),打破传统one-hot编码“维度高、无语义关联”的
- 数学:什么是平行四边形法则?
千码君2016
数学合向量共起点对角线向量加法余弦定理力的合成与分解向量代数
平行四边形法则是物理学和数学中用于合成向量的基本法则,主要用于描述如何将两个向量合成为一个合向量,其原理可通过几何图形直观表示。以下是关于该法则的详细介绍:一、定义与几何表达1.基本定义当两个向量以共起点的方式存在时(即它们的起点相同),可以以这两个向量为邻边作一个平行四边形,那么这两个向量所夹的对角线(从共同起点出发的对角线)就表示这两个向量的合向量。2.几何作图步骤设向量OA→\overrig
- Jmeter使用过程中的一些总结
kanyun123
jmeter
以下总结使用的Jmeter版本为5.6.31、当把Jmeter语言转换为中文时,可能会出现jmeter日志不出现,当发现Jmeter不发送请求时,不显示日志,排查问题就会没有头绪,此时可以尝试将语言切换为英文,再尝试发现日志出现了。2、当你辛辛苦苦地的做完的稳定性测试,还没来得及截图,这个时候,你心血来潮想切换下语言,然后你面发现测好的数据都没了。3、有些数据使用csv或者jmeter的内置函数都
- Elasticsearch 结果聚合与分页机制详解
亲爱的非洲野猪
elasticsearch大数据搜索引擎
一、结果聚合原理Elasticsearch的分布式结果聚合是通过两阶段查询过程完成的:1.查询阶段(QueryPhase)分片级处理:协调节点将查询广播到所有相关分片(主分片或副本分片)每个分片独立执行查询,计算本地相关性评分各分片返回前N条结果的文档ID和评分(N=from+size)特点:使用优先级队列(Top-HitsCollector)收集结果默认返回每个分片的Top10结果(可通过pre
- “相关分析”
不解风情的老妖怪哎
数据分析学习笔记数据分析大数据
一、相关分析的核心概念1.定义(1)衡量两个或多个变量之间的线性或单调关系的强度和方向(正/负相关)。(2)注意:相关性≠因果关系。2.相关系数的范围(1)取值范围为[-1,1]:1:完全正相关-1:完全负相关0:无线性相关3.应用场景(1)探索变量间的潜在关系(如收入与消费水平、广告投入与销售额)。(2)辅助特征选择(如剔除高度相关的变量,避免多重共线性)。二、常用相关系数及方法1.Pearso
- 分类树/装袋法/随机森林算法的R语言实现
廖致君
R
原文首发于简书于[2018.06.12]本文是我自己动手用R语言写的实现分类树的代码,以及在此基础上写的袋装法(bagging)和随机森林(randomforest)的算法实现。全文的结构是:分类树基本知识predginisplitrulesplitrule_bestsplitrule_randomsplittingbuildTreepredict装袋法与随机森林基本知识baggingpredic
- 数据可视化图表怎么做?推荐一款比 excel 可视化数据看板还好用的工具!
isNotNullX
数据治理信息可视化excel数据分析数据库数据治理
目录一、数据可视化图表的制作基础1.明确数据可视化的目标2.选择合适的数据3.挑选恰当的图表类型二、数据可视化图表的制作流程1.数据收集与整理2.选择制作工具3.制作图表4.优化与解读三、Excel可视化数据看板的局限性1.数据处理能力有限2.可视化效果和交互性不足3.协作和共享不便四、推荐FineBI作为更优选择1.强大的数据处理能力2.丰富的可视化效果和交互性3.良好的协作和共享功能4.市场认
- flutter内容学习总结
玖柒凯哲
学习
Flutter语言学习引言随着移动互联网的快速发展,移动应用开发已成为软件开发领域的一个重要分支。为了满足日益增长的应用需求,开发者们寻求更高效、更便捷的开发工具。Flutter作为一个由Google推出的开源移动应用开发框架,它以其高效的编码体验、优秀的性能和可观的UI保真度吸引了众多开发者的关注。本学习内容总结报告将围绕Flutter开发环境的搭建、调试方法、核心组件和布局管理进行详细阐述。F
- 从0开始学习R语言--Day27--空间自相关
Chef_Chen
学习
有的时候,我们在数据进行分组时,会发现用正常的聚类分析的方法和思维,分组的情况不是很理想。其实这是因为我们常常会忽略一个问题:假设我们正在分析的数据是真实的,那么它也肯定在一定程度上符合客观规律。而如果我们正在分析的数据中,有真实的客观空间数据时,可以考虑用空间自相关的方法去分析。例如我们在分析城市犯罪率的时候,用聚类分析的思维,我们可能会思考不同城市的犯罪特征是什么,是否有相似点,亦或是试图把城
- MATLAB实现基于基元共生矩阵的纹理特征提取方法
杏花朵朵
本文还有配套的精品资源,点击获取简介:纹理特征提取在图像处理中对于模式识别和分类等应用至关重要。本文将详细介绍如何在MATLAB中使用基元共生矩阵(PCM)来提取图像的纹理特征。基元共生矩阵通过统计像素对在特定距离和方向上的相对位置关系来描述纹理的局部结构。本方法首先定义不同的方格和方向,然后计算共生矩阵,并从中提取出对比度、能量、熵、相关性等统计特征。最后,这些统计特征被组合成特征向量,用于图像
- 数据赋能(298)——运营管理——计划性原则
lh1793
数据
概述在数据应用中,计划性原则的重要性主要体现在以下几个方面:明确方向:一个明确的计划和策略能够确保数据收集的方向正确,避免盲目或随意收集,从而提高数据的有效性和相关性。提高效率:通过预先规划,可以合理分配资源,优化数据收集的流程和方法,从而提高数据收集的效率。确保质量:计划性原则有助于确保数据收集的准确性和完整性,减少错误和遗漏,提高数据的质量。原则定义数据计划性原则:数据收集应有明确的计划和策略
- 第100+42步 ChatGPT学习:R语言实现阈值调整
Jet4505
《100+XStepstoGetML》学习r语言开发语言chatgpt
今天来说个机器学习分类的概念,阈值。一、何为阈值这个阈值(Threshold)在二分类问题中起到了关键作用,它决定了模型预测结果的分类边界。在二分类问题中,模型通常会输出一个概率值(介于0和1之间),表示样本属于某一类(通常为正类)的可能性。阈值的作用是将这个概率值转换为具体的分类结果(0或1)。如果预测概率**大于阈值**,则分类为正类(1)。如果预测概率**小于或等于阈值**,则分类为负类(0
- 从0开始学习R语言--Day26--因果推断
很多时候我们在探讨数据的相关性问题时,很容易会忽略到底是数据本身的特点还是真的是因为特征的区分导致的不同,从而误以为是特征起的效果比较大。这就好比测试一款新药是否真的能治病,假如吃药的患者康复的更快,那到底是因为药物本身的效果好,还是因为患者本身更健康,平时有控制饮食合理作息与运动,从而在患病后更快地凭借自身免疫力战胜病毒。这需要我们意识到对照试验还需要人为地补足某些条件,也就是探讨是否真的是X导
- 【Elasticsearch】自定义相似性算法
risc123456
Elasticsearchelasticsearch
在Elasticsearch中,可以通过自定义相似度算法来优化搜索结果的相关性。以下是几种常见的自定义相似度算法的方法:1.使用内置相似度算法Elasticsearch默认使用BM25算法,但也可以切换到其他内置的相似度算法,如TF-IDF或布尔相似度。例如:```jsonPUT/my_index{"settings":{"similarity":{"my_similarity":{"type":
- 大语言模型应用指南:长期记忆
AI天才研究院
AI大模型企业级应用开发实战Agent实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:长期记忆关键词:长期记忆大语言模型序列生成记忆增强应用案例1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,大语言模型(LargeLanguageModels,LLMs)凭借其强大的序列生成能力,已经成为自然语言处理领域的热门话题。然而,尽管这些模型在诸如文本生成、问答和代码生成等任务上表现出色,但在涉及需要长时间跨度或跨时间序列相关性的任务时,它们的性能往往受限于短期记
- 【AI大模型】RAG 架构图解:从基础到高级的7种模式,看到就是赚到!!
AI大模型datian
人工智能架构语言模型AI大模型RAGagiLLM
前言「RAG技术通过在AI生成过程中引入外部知识检索,从基础的文档查询发展到多模态、Multi-Agent体协同的智能架构,让AI回答更准确、更全面」「核心组件」嵌入模型:将文本转换为向量表示生成模型:负责最终的内容生成重排序模型:优化检索结果的相关性向量数据库:存储和检索向量化的内容提示模板:规范化的查询处理模板AIAgent:智能决策和任务协调图例1NaiveRAGNaiveRAG(Retri
- 最新期刊影响因子,基本包含全部期刊
Bioinfo科研生信筆記
影响因子2024年期刊影响因子期刊因子因子IF
原文链接:2024年期刊最新影响因子(IF)2024年期刊最新影响因子(IF)BioinfoR生信筆記,注于分享生物信息学相关知识和R语言绘图教程。
- R语言文本探索与预处理:入门指南
Morpheon
Rr语言开发语言
今天是个阴雨连绵的夏日,因此带来今天的第二篇推文。祝您阅读愉快!文本探索和预处理是将非结构化文本转换为结构化数据进行分析的关键步骤。R语言中的正则表达式(Regex)正则表达式(Regex)是定义文本模式的字符序列,用于搜索、模式匹配和文本替换等任务。在处理搜索引擎和垃圾邮件过滤等应用中的非结构化文本时至关重要。R中常用的正则表达式函数:grep()/grepl():定位匹配模式的字符串;grep
- MetaGPT Actions 模块内容整理
这是Jamon
MetaGPT源码解析人工智能
MetaGPTActions模块内容整理本文整理https://github.com/FoundationAgents/MetaGPT/tree/main/metagpt/actions目录下的模块内容。基础框架文件action.py:Action基类定义action_graph.py:动作图定义action_node.py:ActionNode定义action_outcls_registry.p
- LangChain 与 Milvus 的碰撞:全文检索技术实践
金汐脉动 | PulseTide
禅与LangChainlangchainmilvus全文检索
一、全文搜索全文搜索是一种通过匹配文本中特定关键词或短语来检索文档的传统方法。它根据词频等因素计算出的相关性分数对结果进行排序。语义搜索更善于理解含义和上下文,而全文搜索则擅长精确的关键词匹配,因此是语义搜索的有益补充。BM25算法被广泛用于全文搜索的排序,并在检索增强生成(RAG)中发挥着关键作用。Milvus2.5引入了使用BM25的本地全文搜索功能。这种方法将文本转换为代表BM25分数的稀疏
- 波动率与期权价格的关系是正相关的吗?
致***锌
笔记
本文主要介绍波动率与期权价格的关系是正相关的吗?波动率与期权价格的关系确实是正相关的,但需要结合理论模型和实际市场情况来全面理解这一关系。波动率与期权价格的关系是正相关的吗?1.理论层面的正相关性在期权定价模型(如Black-Scholes模型)中,波动率(σ)是核心输入参数之一。其逻辑如下:波动率代表不确定性:波动率衡量标的资产价格未来变动的幅度。波动率越高,标的资产价格在期权到期前大幅上涨或下
- 文本聚类分析:基于相似性的文档分组
Morpheon
RRTextClustering
大家周一快乐!最近世界局势动荡,中东冲突不断。这种混乱可能会影响我们对世界的认知。就像法国人说的“C’estlavie”(这就是生活)。但无论未来如何,请记住瑞士人常说的“Lavieestbelle”(生活是美好的)。文本聚类分析通过内容相似性将文档分组,实现在R语言中自动对大型文本集合进行分类。什么是文本聚类分析?聚类分析将文档分组,使得同一组内的文档彼此之间的相似度高于与其他组中文档的相似度。
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio