免费部署开源大模型 ChatGLM-6B

参考:【大模型-第一篇】在阿里云上部署ChatGLM3-CSDN博客

ChatGLM 是一个开源的、支持中英双语的对话语言模型,由智谱 AI 和清华大学 KEG 实验室联合发布,基于 General Language Model (GLM) 架构,具有 62 亿参数。ChatGLM3-6B 更是在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上增加了更多特性。

虽然,目前 ChatGLM 比 GPT 稍有逊色,但是,在部署后可以完全本地运行,完全由自己掌控!

ChatGLM-6B 减少显存与内存占用

全量模型运行加载 GPU运行模式下需要13GB显存+14G内存,CPU运行模式下需要28GB内存,如果你电脑没这么大显存或者内存,可以通过加载量化模型减少显存与内存占用

参考:使用 CPU 本地安装部署运行 ChatGLM-6B 获得自己的专属 AI 猫娘 — 秋风于渭水 (tjsky.net)

硬件与软件准备

  • 随便一个CPU(差不多就行,毕竟我看网友还有用赛扬N6210这种东西跑的)
  • 至少32GB的内存(因为模型运行大概需要23~25GB内存)
  • 大于30GB硬盘可用空间
  • 最好有SSD(最开始要将模型读到内存中,模型本体大概就需要占用11GB内存,使用HDD会经历一个漫长的启动过程)

免费部署开源大模型 ChatGLM-6B_第1张图片

参考:https://blog.csdn.net/qq_41773806/article/details/134189261

1、在阿里云上申请注册及登录并完成认证

2、登录阿里云 免费试用 页面 https://free.aliyun.com/?product=1395&crowd=personal 

3、 选择试用产品:

免费部署开源大模型 ChatGLM-6B_第2张图片
选择 立即试用

免费部署开源大模型 ChatGLM-6B_第3张图片

免费部署开源大模型 ChatGLM-6B_第4张图片

进入工作空间 宣交互式建模(DSW)

免费部署开源大模型 ChatGLM-6B_第5张图片

输入实例名称,就叫它 550W 吧~,GPU 选择 A10 或者 V100 都行,这俩是支持资源包抵扣的,其他的不支持,这里注意!V100 性能更好,但我们测试使用没必要,就选 A10 就行,A10 显卡每小时消耗6.991计算时,如果不关机持续使用大概可以使用30天。

免费部署开源大模型 ChatGLM-6B_第6张图片

我打开的时候只有V100 了  支持资源包抵扣

没选数据集 进入选择镜像 

免费部署开源大模型 ChatGLM-6B_第7张图片

选择创建实例 点击下一步 耐心等待实例创建。

免费部署开源大模型 ChatGLM-6B_第8张图片

二、部署GLM3

部署GLM3,包括其它类似的开源大模型,步骤都是差不多的,毕竟这些高校/大厂都帮大家封装好了,所以并没有特别繁琐的步骤。
在我看来,主要就是三步:1、环境搭建;2、git下载GLM3(如果要本地化部署,还要下载模型);3、修改路径并启用

1、环境搭建

免费部署开源大模型 ChatGLM-6B_第9张图片

因为使用的是阿里云的PAI,默认已经帮我们配置好了环境变量、网络,装好了python甚至pytorch、tensorflow等等,点击打开后进入

免费部署开源大模型 ChatGLM-6B_第10张图片

点击 terminal进入:

免费部署开源大模型 ChatGLM-6B_第11张图片

2、git下载GLM3

2.1 git clone下载GLM3仓库
2.1.1首先git clone下载GLM3仓库,并切换到这个文件夹下

git clone  https://github.com/THUDM/ChatGLM3

免费部署开源大模型 ChatGLM-6B_第12张图片

  1. Transformers是一个自然语言处理(NLP)模型,由Google提出并广泛应用于各种NLP任务中,如机器翻译、文本分类、问答系统等。Transformers模型采用了一种称为“自注意力机制”(self-attention mechanism)的技术,可以有效地处理长序列的输入数据,并且并行计算能力强,因此在大规模数据集上训练效果优异。
  2. TransFlow则是一种基于流(flow)的编程模型和执行引擎,旨在简化分布式数据流应用程序的开发和部署。TransFlow通过将数据流编程模型和流处理引擎相结合,提供了一种高效、灵活和易用的方式来处理大规模数据流。
2.1.2 然后使用 pip 安装依赖:

免费部署开源大模型 ChatGLM-6B_第13张图片

免费部署开源大模型 ChatGLM-6B_第14张图片

cd ChatGLM3

pip install --upgrade pytorch-lightning
pip install -r requirements.txt 

WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv

pip install virtualenv

免费部署开源大模型 ChatGLM-6B_第15张图片

virtualenv venv
进入:source venv/bin/activate

停止:deactivate (参考)

免费部署开源大模型 ChatGLM-6B_第16张图片

pip install -r requirements.txt 

免费部署开源大模型 ChatGLM-6B_第17张图片

免费部署开源大模型 ChatGLM-6B_第18张图片

安装完成:

pip install --upgrade pip

免费部署开源大模型 ChatGLM-6B_第19张图片

3、修改变量路径并启用

有2个文件需要修改变量路径,一个是/mnt/workspace/ChatGLM3/basic_demo下的“web_demo.py”,另一个是chatgm3-6b下的“config.json”,都是把默认的“THUDM/”修改为“/mnt/workspace/”
这里的修改,可以使用vim,也可以直接左边栏双击打开文件修改

免费部署开源大模型 ChatGLM-6B_第20张图片

免费部署开源大模型 ChatGLM-6B_第21张图片

pip install mdtex2html

免费部署开源大模型 ChatGLM-6B_第22张图片

免费部署开源大模型 ChatGLM-6B_第23张图片

启动后  问了一下 貌似卡住了。。。

免费部署开源大模型 ChatGLM-6B_第24张图片

待研究。。。

修改 cli_demo.py

免费部署开源大模型 ChatGLM-6B_第25张图片

python cli_demo.py

免费部署开源大模型 ChatGLM-6B_第26张图片

当前 GPU 没有被使用 还是使用的CPU

你可能感兴趣的:(人工智能)