- 详解:Grok中文版 _Grok 3 国内中文版本在线使用
人工智能
GrokAI是由XAI公司推出的一款尖端人工智能系统。作为该公司核心技术之一,GrokAI专注于推动人工智能在各行各业的实际应用,尤其在数据分析、自然语言处理(NLP)、自动化决策、机器学习等领域表现出色。Grok的最大亮点在于其强大的数据处理能力。它能够高效地从大量复杂数据中提取有价值的信息,并做出精准预测。借助深度学习与强化学习等先进技术,GrokAI具备自我学习的能力,可以通过不断的训练来优
- 【大模型学习】第八章 深入理解机器学习技术细节
好多渔鱼好多
AI大模型机器学习AI大模型人工智能
目录引言一、监督学习(SupervisedLearning)1.定义与工作原理2.常见任务3.应用场景示例:房价预测二、无监督学习(UnsupervisedLearning)1.定义与工作原理2.常见任务3.应用场景示例:客户细分三、强化学习(ReinforcementLearning)1.定义与工作原理2.常见应用场景3.应用场景示例:游戏AI四、集成学习(EnsembleLearning)1.
- AI语言模型的技术之争:DeepSeek与ChatGPT的架构与训练揭秘
m0_74825466
面试学习路线阿里巴巴chatgpt人工智能语言模型
-CSDN博客目录第一章:DeepSeek与ChatGPT的基础概述1.1DeepSeek简介1.2ChatGPT简介第二章:模型架构对比2.1Transformer架构:核心相似性2.2模型规模与参数第三章:训练方法与技术3.1预训练与微调:基础训练方法3.2强化学习与奖励建模3.3知识蒸馏与量化技术第四章:训练数据与应用4.1训练数据集:数据源的差异4.2特定领域任务:应用场景的差异第五章:代
- 自然语言模型(NLP)介绍
Liudef06
StableDiffusion自然语言处理人工智能
一、自然语言模型概述自然语言模型(NLP)通过模拟人类语言理解和生成能力,已成为人工智能领域的核心技术。近年来,以DeepSeek、GPT-4、Claude等为代表的模型在技术突破和应用场景上展现出显著优势。例如,DeepSeek通过强化学习提升推理能力,其混合专家架构(MoE)显著优化了计算效率。二、核心技术解析1.DeepSeek模型架构混合专家模型(MoE):DeepSeek-V3采用Mo
- Search-o1:智体搜索增强的大型推理模型
三谷秋水
机器学习大模型人工智能人工智能深度学习机器学习
25年1月来自人大和清华的论文“Search-o1:AgenticSearch-EnhancedLargeReasoningModels”。大型推理模型(LRM)(例如OpenAI-o1)已通过大规模强化学习展示长步推理能力。然而,它们的扩展推理过程通常会受到知识不足的影响,从而导致频繁出现不确定性和潜在错误。为了解决这一限制,引入Search-o1,这是一个使用智体检索增强生成(RAG)机制和用
- 强化学习实践 openai gymnasium CartPole-v1 DQN算法实现
abstcol
强化学习深度学习机器学习神经网络
文章目录前言DQN简介环境简介任务实现说开来去我的Github实现:gym(GitHub)本篇博客主要是个人实现过程的主观感受,如果想要使用模型可以直接去GitHub仓库,注释完善且规范。觉得有用请给我点个star!前言最近在学习强化学习,大致过了一遍强化学习的数学原理(视频)。视频讲的很好,但是实践的部分总是感觉有点匮乏(毕竟解决gridworld方格世界(GitHub)的问题的很难给人特别大的
- 强化学习是否能够在完全不确定的环境中找到一个合理的策略,还是说它只能在已知规则下生效?
concisedistinct
人工智能人工智能强化学习
强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,广泛应用于机器人控制、自动驾驶、游戏策略和金融决策等领域。其核心理念是通过与环境的互动,不断学习如何选择最优行动以最大化累积奖励。尽管强化学习在许多已知和相对确定的环境中表现出色,但在面对完全不确定或动态变化的环境时,其表现和可靠性是否依然能保持一致是一个值得深入探讨的问题。我们生活的世界充满了不确定性,尤其是在
- 清华大学DeepSeek PPT第二版深度解读:人工智能前沿技术解析
qudongmofashi
人工智能
立即下载完整课件资料点击此处获取最新版PPT一、DeepSeek课件为何值得关注?清华大学出品的DeepSeek系列教学资源,长期聚焦人工智能领域核心技术。第二版PPT从以下方面实现全面升级:AI前沿技术覆盖:涵盖大模型、深度强化学习等领域最新研究进展工业级实践案例:新增多个企业级项目解决方案案例三维知识框架:从算法原理→代码实现→工程部署的全链路解析下载建议:建议保存至本地,结合源码案例同步学习
- PyTorch 中结合迁移学习和强化学习的完整实现方案
小赖同学啊
人工智能pytorch迁移学习人工智能
结合迁移学习(TransferLearning)和强化学习(ReinforcementLearning,RL)是解决复杂任务的有效方法。迁移学习可以利用预训练模型的知识加速训练,而强化学习则通过与环境的交互优化策略。以下是如何在PyTorch中结合迁移学习和强化学习的完整实现方案。1.场景描述假设我们有一个任务:训练一个机器人手臂抓取物体。我们可以利用迁移学习从一个预训练的视觉模型(如ResNet
- 【机器学习】Reinforcement Learning-强化学习基本概念
长相忆兮长相忆
深度学习人工智能算法机器学习
1、Q值与V值1.1Q值和V值的定义Q值:也称为动作价值函数,评估动作的价值,它代表了智能体选择这个动作后,一直到最终状态奖励总和的期望,表示为Q(s,a),其中s是状态,a是动作。V值:评估状态的价值,也称为状态价值函数,表示为V(s),其中s是状态。它代表了智能体在这个状态下,一直到最终状态的奖励总和的期望。V值与动作无关只与状态有关。Q值和V值的概念是一致的,都是衡量在马可洛夫树上某一个节点
- SFT与RLHF的关系
一只积极向上的小咸鱼
人工智能
在大模型训练中,SFT(监督微调)和RLHF(基于人类反馈的强化学习)是相互关联但目标不同的两个阶段,通常需要结合使用以优化模型性能,而非互相替代。以下是关键要点:1.核心关系SFT:基于标注的高质量样本(如问答对、指令-回答数据),以监督学习方式直接调整模型参数,使模型初步掌握特定任务(如对话生成)的基础能力。作用:快速适配下游任务,让模型学会"如何正确生成内容"。RLHF:通过人类对模型输出的
- 蚂蚁技术研究院发布推理大模型强化学习框架,邀请开发者共同助力 AGI 生态
开源开源项目介绍
2月25日,蚂蚁技术研究院正式开源强化学习框架AReaL(AntReasoningRL)。AReaL源自开源项目ReaLHF,旨在训练每个人都可以复现和贡献的大型推理模型(LRM)。AReaL是蚂蚁技术研究院为开发一个完全开放和包容的AGI世界迈出的一步。1.完全开放与可复现我们承诺持续发布与训练LRM相关的所有代码、数据集和训练流程。所有核心组件全部开源,无需担心专有限制或隐藏细节,开发者可无阻
- DeepSeek-R1:通过强化学习激励大型语言模型的推理能力
AI专题精讲
大模型专题系列语言模型人工智能自然语言处理
摘要我们介绍了第一代推理模型DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero是一个通过大规模强化学习(RL)训练而成的模型,无需监督微调(SFT)作为初步步骤,展示了卓越的推理能力。通过RL,DeepSeek-R1-Zero自然涌现出许多强大而有趣的推理行为。然而,它也面临诸如可读性差和语言混合等挑战。为了解决这些问题并进一步提升推理性能,我们引入了Dee
- DeepSeek-R1 技术报告解读:用强化学习激发大模型的推理潜能
跑起来总会有风
aiAI编程论文阅读
文章目录1.背景2.DeepSeek-R1训练流程2.1DeepSeek-R1-Zero:纯强化学习2.2DeepSeek-R1:冷启动+多阶段训练3.蒸馏小模型3.1蒸馏流程与优势3.2蒸馏vs.直接RL4.实验结果4.1主模型表现4.2蒸馏模型表现5.关键创新与思考6.总结参考链接**导读:**DeepSeek-R1是近期发布的一款开源大模型,它将纯强化学习与多阶段训练策略相结合,大幅提升了模
- 强化学习与网络安全资源-论文和环境
AI拉呱
web安全安全
TableofContentsRL-EnvironmentsPapersBooksBlogpostsTalksMiscellaneous↑EnvironmentsPentestingTrainingFrameworkforReinforcementLearningAgents(PenGym)TheARCDPrimary-levelAITrainingEnvironment(PrimAITE)CSL
- 基础篇(二)从监督学习到强化学习:机器学习的不同范式
带上一无所知的我
智能体的自我修炼:强化学习指南机器学习人工智能基础篇
从监督学习到强化学习:机器学习的不同范式在机器学习的广阔领域中,监督学习和强化学习是两种最重要的范式。它们各自有其独特的特点和应用场景,但也存在紧密的联系。本文将从监督学习出发,逐步延伸到强化学习,帮助你理解这两种范式的区别与联系,以及它们在实际中的应用。1.监督学习:从标注数据中学习1.1什么是监督学习?监督学习是机器学习中最常见的范式之一。它通过从标注数据中学习,建立输入(特征)与输出(标签)
- Matlab 大量接单
matlabgoodboy
matlab开发语言
分享一个matlab接私活、兼职的平台1、技术方向满足任一即可2、技术要求3、最后技术方向满足即可MATLAB:熟练掌握MATLAB编程语言,能够使用MATLAB进行数据处理、机器学习和深度学习等相关工作。机器学习、深度学习、强化学习、仿真、复现、算法、神经网络、建模、图像识别、数据挖掘、数据获取、爬虫、数据分析、目标检测、算法创新、因子分析、相关分析、方差分析、判别分析、方程分析、线性回归、中介
- 强化学习的数学原理-六、随机近似与随机梯度下降
儒雅芝士
pythonnumpy机器学习
代码来自up主【强化学习的数学原理-作业】GridWorld示例代码(已更新至DQN、REINFORCE、A2C)_哔哩哔哩_bilibiliSGD、GD、MGD举例:#先初始化一个列表,未来要在这100个样本里面再sample出来np.random.seed(0)X=np.linspace(-10,10,1000)Y=2*X**2+3*X+5#用作真实值#定义二次函数,找到一组参数a、b、c使得
- 模型优化之强化学习(RL)与监督微调(SFT)的区别和联系
搏博
深度学习人工智能机器学习架构transformer
强化学习(RL)与监督微调(SFT)是机器学习中两种重要的模型优化方法,它们在目标、数据依赖、应用场景及实现方式上既有联系又有区别。想了解有关deepseek本地训练的内容可以看我的文章:本地基于GGUF部署的DeepSeek实现轻量级调优之一:提示工程(PromptEngineering)(完整详细教程)_deepseekgguf-CSDN博客本地基于GGUF部署的DeepSeek实现轻量级调优
- DeepSeek R1 详解:思维链、强化学习和蒸馏
前网易架构师-高司机
2025年最新-深度学习+AIDeepSeek和AI工具深度学习Deepseek
目录思维链强化学习蒸馏DeepSeek是如何做到的?训练过程较小模型基准为什么Deepseek很重要DeepSeekR1常见问题解答来自中国的新型大型语言模型DeepSeekR1的发布在人工智能研究界引起了轰动。这不仅仅是又一次渐进式改进。DeepSeek代表着一次重大飞跃。大多数新的人工智能模型感觉都像是小步前进,DeepSeek-R1则不同。Deepseek的基准在推理任务(数学、编码和科学)
- 强化学习探索与利用:多臂老虎机的UCB与Softmax策略
海棠AI实验室
智元启示录深度学习人工智能机器学习USBSoftmax
目录引言多臂老虎机问题概述ε-贪心算法(ε-Greedy)上置信界(UCB,UpperConfidenceBound)软max策略(Softmax)算法对比与评估实验与结果总结与展望参考文献引言多臂老虎机问题(Multi-ArmedBandit,MAB)是强化学习领域中的一个经典问题,广泛应用于广告推荐、网页优化、金融交易、医疗决策等场景。其核心挑战在于如何平衡探索(exploration)和利用
- 程序员未来的出路:行业趋势与职业发展分析
guzhoumingyue
AIpython
随着技术的发展和行业需求的变化,程序员的职业出路也在不断演变。以下是程序员未来可能的职业发展方向及具体建议:一、技术深耕路线AI与机器学习专家趋势:AI技术在各行业的应用日益广泛,从自动驾驶到智能客服,需求持续增长。技能要求:Python、TensorFlow、PyTorch、数据挖掘、算法优化。发展路径:从机器学习工程师做起,积累项目经验。深入研究深度学习、强化学习等前沿技术。成为AI架构师或数
- 强化学习——基本概念
AI大模型探索者
人工智能ai深度学习机器学习语言模型
何为强化学习机器学习的一大分支强化学习(ReinforcementLearning)是机器学习的一种,它通过与环境不断地交互,借助环境的反馈来调整自己的行为,使得累计回报最大。强化学习要解决的是决策问题——求取当前状态下最优行为或行为概率。强化学习包括智能体和环境两大对象,智能体是算法本身,环境是与智能体交互的外部。智能体(IntelligentAgent),在人工智能领域,智能体指一个可以观察周
- 【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)
@橘柑橙柠桔柚
python算法人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果2.1有/无策略奖励2.2训练结果12.2训练结果23参考文献4Python代码、数据、文章1概述文献来源:根据微电网或微能源网是否与主电网相连接,可将其分为并网型和独立型2种。本文以并网型微能源网为研究对象,研究其并网运行的能量管理与优化问题。目前,
- 深入详解人工智能机器学习:强化学习
猿享天开
人工智能基础知识学习人工智能机器学习强化学习
目录强化学习概述强化学习的基本概念定义关键组件强化学习过程常用算法应用示例示例代码代码解释应用场景强化学习核心概念和底层原理核心概念底层原理总结强化学习概述强化学习(ReinforcementLearning,RL)是机器学习中的一个重要领域,其核心目标是通过与环境的交互学习如何采取行动以最大化累积奖励。与监督学习不同的是,强化学习不依赖于给定的输入输出对,而是通过试探和反馈不断改进决策策略。强化
- 机器学习:强化学习的epsilon贪心算法
田乐蒙
PythonML机器学习贪心算法人工智能
强化学习(ReinforcementLearning,RL)是一种机器学习方法,旨在通过与环境交互,使智能体(Agent)学习如何采取最优行动,以最大化某种累积奖励。它与监督学习和无监督学习不同,强调试错探索(Exploration-Exploitation)以及基于奖励信号的学习。强化学习任务通常用马尔可夫决策过程来描述:机器处于环境EEE中,状态空间XXX,其中每个状态x∈Xx\inXx∈X是
- DeepSeek R1 简单指南:架构、训练、本地部署和硬件要求
爱喝白开水a
人工智能AI大模型DeepSeekR1DeepSeek算法人工智能训练大模型部署
DeepSeek推出的LLM推理新策略DeepSeek最近发表的论文DeepSeek-R1中介绍了一种创新的方法,通过强化学习(RL)提升大型语言模型(LLM)的推理能力。这项研究在如何仅依靠强化学习而不是过分依赖监督式微调的情况下,增强LLM解决复杂问题的能力上,取得了重要进展。DeepSeek-R1技术概述模型架构DeepSeek-R1不是一个单独的模型,而是包括DeepSeek-R1-Zer
- 扑克强化学习:DouZero/douzero/dmc/dmc.py (train)
强化学习曾小健
python人工智能深度学习
deftrain(flags):"""Thisisthemainfuntionfortraining.Itwillfirstinitilizeeverything,suchasbuffers,optimizers,etc.Thenitwillstartsubprocessesasactors.Then,itwillcalllearningfunctionwithmultiplethreads.""
- 智能路径规划:从数学建模到算法优化的理论与实践
木子算法
人工智能数学建模数学建模算法人工智能
智能路径规划:从数学建模到算法优化的理论与实践一、引言在机器人学、自动驾驶、物流调度等领域,路径规划是实现自主导航的核心技术。从经典的Dijkstra算法到前沿的强化学习方法,路径规划技术的发展始终依赖于数学建模与算法优化的深度结合。本文将系统构建路径规划的理论框架,通过数学公式推导核心算法原理,并结合MATLAB代码实现完整的技术闭环。二、路径规划的数学基础(一)状态空间建模路径规划的本质是在状
- 【人工智能算法】人工智能算法都包括什么?请详细列出和解释
资源存储库
算法强化学习人工智能算法
目录人工智能算法都包括什么?请详细列出和解释1.机器学习算法(MachineLearningAlgorithms)监督学习算法(SupervisedLearning)无监督学习算法(UnsupervisedLearning)强化学习算法(ReinforcementLearning)2.进化算法(EvolutionaryAlgorithms)3.模拟退火(SimulatedAnnealing)4.粒
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$