【AI】Tensor基础入门

Tensor基础入门

import torch
import numpy as np

1. 初始化Tensor

  1. 直接来源于数据
data = [[1, 2],[3, 4]]
x_data = torch.tensor(data)
x_data
tensor([[1, 2],
        [3, 4]])
  1. 使用Numpy数组
np_array = np.array(data)
x_np = torch.from_numpy(np_array)
x_np
tensor([[1, 2],
        [3, 4]], dtype=torch.int32)
  1. 利用其他tensor
x_ones = torch.ones_like(x_data) # retains the properties of x_data
print(f"Ones Tensor: \n {x_ones} \n")

x_rand = torch.rand_like(x_data, dtype=torch.float) # overrides the datatype of x_data
print(f"Random Tensor: \n {x_rand} \n")
Ones Tensor: 
 tensor([[1, 1],
        [1, 1]]) 

Random Tensor: 
 tensor([[0.9375, 0.0723],
        [0.7438, 0.0384]]) 

  1. 使用随机生成或常量生成
shape = (2,3,)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)

print(f"Random Tensor: \n {rand_tensor} \n")
print(f"Ones Tensor: \n {ones_tensor} \n")
print(f"Zeros Tensor: \n {zeros_tensor}")
Random Tensor: 
 tensor([[0.0201, 0.9371, 0.0226],
        [0.4742, 0.3425, 0.8761]]) 

Ones Tensor: 
 tensor([[1., 1., 1.],
        [1., 1., 1.]]) 

Zeros Tensor: 
 tensor([[0., 0., 0.],
        [0., 0., 0.]])

2.Tensor的属性

Tensor具有shape,datatype和device三个属性

tensor = torch.rand(3,4)

print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")
Shape of tensor: torch.Size([3, 4])
Datatype of tensor: torch.float32
Device tensor is stored on: cpu

3.Tensor的操作

Tensor有超过100多种操作,包括算术运算,线性代数,矩阵运算,采样和更多其他操作,具体可以参考[]:(https://pytorch.org/docs/stable/torch.html)

通常Tensor是在cpu上创建的,当我们需要在GPU上使用时,可以使用to方法来操作

# We move our tensor to the GPU if available
if torch.cuda.is_available():
    tensor = tensor.to("cuda")
  • 像numpy一样索引和分割
tensor = torch.ones(4, 4)
print(f"First row: {tensor[0]}")
print(f"First column: {tensor[:, 0]}")
print(f"Last column: {tensor[..., -1]}")
tensor[:,1] = 0
print(tensor)
First row: tensor([1., 1., 1., 1.])
First column: tensor([1., 1., 1., 1.])
Last column: tensor([1., 1., 1., 1.])
tensor([[1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.]])
  • 连接tensors(joining tensors)
t1 = torch.cat([tensor, tensor, tensor], dim=1)
print(t1)
t2 = torch.cat([tensor, tensor, tensor], dim=0)
print(t2)
tensor([[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
        [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
        [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
        [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.]])
tensor([[1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.]])
  • 算术操作
# This computes the matrix multiplication between two tensors. y1, y2, y3 will have the same value
# ``tensor.T`` returns the transpose of a tensor
y1 = tensor @ tensor.T
y2 = tensor.matmul(tensor.T)

y3 = torch.rand_like(y1)
torch.matmul(tensor, tensor.T, out=y3)


# This computes the element-wise product. z1, z2, z3 will have the same value
z1 = tensor * tensor
z2 = tensor.mul(tensor)

z3 = torch.rand_like(tensor)
torch.mul(tensor, tensor, out=z3)
tensor([[1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.]])
  • 单元素tensors
    可以使用item()方法来将其转换为python的算术值
agg = tensor.sum()
agg_item = agg.item()
print(agg_item, type(agg_item))
12.0 
  • 原位操作

使用“_” 下划线后缀的方法是原位操作符,可以减少内存占用

print(f"{tensor} \n")
tensor.add_(5)
print(tensor)
tensor([[1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.]]) 

tensor([[6., 5., 6., 6.],
        [6., 5., 6., 6.],
        [6., 5., 6., 6.],
        [6., 5., 6., 6.]])

4. Bridge with Numpy

在cpu上的tensors可以和numpy arrays共享存储位置

  • tensors转numpy 数组
t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")
print(f"t: {t}")
t: tensor([1., 1., 1., 1., 1.])
n: [1. 1. 1. 1. 1.]
t: tensor([1., 1., 1., 1., 1.])

修改tensors也会修改对应的numpy数组

t.add_(1)
print(f"t: {t}")
print(f"n: {n}")
t: tensor([2., 2., 2., 2., 2.])
n: [2. 2. 2. 2. 2.]
  • Numpy数组转Tensor
n = np.ones(5)
t = torch.from_numpy(n)
np.add(n, 1, out=n)
print(f"t: {t}")
print(f"n: {n}")
t: tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
n: [2. 2. 2. 2. 2.]

你可能感兴趣的:(人工智能)