- 检索增强(Retrieval Augmentation)是一种结合信息检索技术和生成模型的技术
大霸王龙
系统分析业务人工智能
检索增强(RetrievalAugmentation)是一种结合信息检索技术和生成模型的技术,旨在通过从外部知识库或文档中检索相关信息来增强生成模型的能力。这种方法广泛应用于自然语言处理(NLP)任务中,如问答系统、对话生成和文本生成等。1.检索增强的核心思想检索增强的核心思想是将生成模型与信息检索系统结合,利用外部知识库或文档中的信息来辅助生成更准确、更丰富的回答或内容。具体来说,检索增强包括以
- 5 个遥遥领先的大模型 RAG 工具
机器学习社区
大模型大模型算法人工智能RAG多模态大模型语言模型
想象一下拥有一种超能力,让你能够对任何问题或提示生成类似人类的回答,同时还能够利用庞大的外部知识库确保准确性和相关性。这不是科幻小说,这就是检索增强生成(RAG)的力量。在本文中,我们将介绍五大遥遥领先的RAG工具或库:LangChain、LlamaIndex、Haystack、RAGatouille和EmbedChain。LangChainLangChain是一个全面的开源框架,用于开发大型语言
- 构建 Q&A 系统:基于文档和模型的问答
drebander
AI编程springAI
在现代企业中,自动化的问答系统可以极大地提升工作效率,特别是在文档处理、客户支持和知识管理等领域。通过结合SpringAI和文档检索技术,可以轻松构建一个智能的问答系统,帮助用户从文档中快速获取信息。本文将展示如何利用SpringAI构建一个可以根据文档内容回答问题的智能Q&A系统。1.构建智能Q&A系统的背景现代的Q&A系统不仅需要能理解用户的问题,还需要能够从大量文档中找到相关的答案。传统的问
- Oracle和Mysql数据库使用Where 1=1 会使索引失效吗?
小小鱼儿小小林
#mysql面试宝典#oracle基础面试这样回答mysqloracle索引
该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点面试官:Oracle和Mysql数据库使用Where1=1会使索引失效吗"WHERE1=1"通常被用作一个占位条件,在动态生成SQL语句时非常有用。它可以作为一个基本的WHERE条件,然后根据需要动态添加其他条件。这样在代码层面可以少做很多的判断,不然代码里面一堆的ifelse在我们日常开
- 由于直接提供完整的游戏商城代码超出了简单回答的范围,并且游戏商城的实现可以相当复杂,涉及前端展示、后端逻辑、数据库设计等多个方面,我会分别用几种流行的编程语言和技术栈概述如何开始搭建一个基本的游戏商城
编程小飞侠a
游戏前端数据库
前端(HTML/CSS/JavaScript+React)React示例:fengbaoshun.com首先,你需要安装Node.js和npm(Node包管理器),然后使用CreateReactApp来快速启动你的前端项目。bashnpxcreate-react-appgame-store-frontendcdgame-store-frontendnpmstart接下来,你可以使用React组件来
- 由于直接提供完整的大型项目代码(如购物商城)在单一回答中是不切实际的,我将为你概述如何在几种流行的编程语言中设置购物商城的基本框架和思路。这包括前端(如HTML/CSS/JavaScript)和后端(
SigridFelix
前端htmlcss
前端(HTML/CSS/JavaScript)dz61.comHTML:创建基础的页面结构,如主页、商品列表页、购物车页和结账页。html我的购物商城欢迎来到我的购物商城商品列表购物车CSS:简单的样式表,用于美化页面。css/*styles.css*/body{font-family:Arial,sans-serif;}h1{color:#333;}ul{list-style-type:none
- 打造你的聊天助手:使用C#、OpenAI和Spectre.Console创建控制台ChatGPT客户端
墨夶
C#学习资料1c#chatgpt开发语言
打造你的聊天助手:使用C#、OpenAI和Spectre.Console创建控制台ChatGPT客户端在这个人工智能飞速发展的时代,ChatGPT以其卓越的对话能力和智能回答在聊天领域引起了革命。你是否想过将这种能力融入到你的控制台应用中,让命令行界面也能拥有智能对话的体验?本文将带你一步步使用C#、OpenAI的API和Spectre.Console库,创建一个功能强大的控制台ChatGPT客户
- 【llm对话系统】大模型RAG之基本逻辑
kakaZhui
人工智能数据库AIGCchatgptllama
大模型RAG之基本逻辑:让LLM更精准地回答你的问题(降低幻觉)你是否遇到过这样的情况:当你向LLM提问时,它可能会给出一些“一本正经胡说八道”的答案,或者无法回答一些特定领域的专业问题?为了解决这个问题,RAG(Retrieval-AugmentedGeneration,检索增强生成)技术应运而生。RAG将检索(Retrieval)和生成(Generation)结合起来,让LLM在回答问题时,能
- AI大模型微调:产品经理面试必知题库与解答技巧!
IT猫仔
人工智能产品经理面试大数据学习职场和发展语言模型
前言这两天跟很多做程序员的朋友聊天,怎么看全网火爆的大模型。让我挺意外的是,大家的反馈普遍都很焦虑。前排提示,文末有大模型AGI-CSDN独家资料包哦!在AI大模型微调领域的产品经理面试中,总会遇到一系列与技术细节、项目经验、市场趋势以及职业规划相关的问题。以下是一些建议的面试题及其回答示例:面试题1:请简述你对AI大模型微调的理解,并举例说明其在实际产品中的应用。回答:AI大模型微调是一种在预先
- 字节的面试,感觉还挺简单的~
go后端面试问题面试字节跳动
今天分享的是训练营的朋友在字节跳动的面试,新鲜出炉的还热乎着呢。题目都挺简单的,但是他的面试体验不太好,因为面试官问了两个类似的问题,感觉有点不认真。下面是面试的内容:面经详解简单介绍下你的项目介绍下教育平台考试模块的业务.包括题目的读写试卷的生成创建之后,试题如何存储试卷如何分发给考生考生如何提交试卷,你们如何收集试卷结果最后怎么判题以下是对每个问题的回答:前端接口使用restful格式,pos
- 类与对象---通俗易懂掌握Java面向对象编程的核心概念
艺杯羹
杂谈java~java开发语言
目录一、面向对象编程(oop)及类与对象理解二、类1.类的定义定义类的方法:三、对象对象的创建引用成员对象四、类的方法1.类的方法基本结构1️⃣访问修饰符2️⃣返回值类型3️⃣方法名4️⃣参数列表5️⃣方法体五、练习如果能回答出这些问题,就可以跳过本章:1.什么是类,什么是对象,互相有什么关系?2.如何创建对象?3.如何引用类中成员变量?4.类中的方法怎么建立。无参,有参,无返回值void如何理解
- Elasticsearch的经典面试题及详细解答
codeBrute
elasticsearch大数据搜索引擎
以下是一些Elasticsearch的经典面试题及详细解答:一、基础概念与原理什么是Elasticsearch?回答:Elasticsearch是一个基于Lucene的分布式搜索引擎,提供了RESTfulAPI,支持多租户能力。它能够快速、近实时地存储、搜索和分析海量数据,每个字段都被索引并可被搜索。Elasticsearch广泛用于全文搜索、日志分析、实时监控等领域。解释Elasticsearc
- 【AI工具】夸克AI试用:分析DeepSeek-V3技术报告
bylander
AI工具AI学习AI论文阅读人工智能学习gpt
安装了夸克AI,试用了一下AI总结功能,导入了DeepSeekV3的技术报告,使用了文章总结、问题提问、脑图、大纲等功能还不错,尤其是几个问题提问,回答的都不错,而且数学公司都是标准的markdown格式,不乱码,这一点就比其他的AI工具强。下面是分析的具体内容》AI文件总结DeepSeek-V3技术报告分析报告引言DeepSeek-V3是一个拥有6710亿参数的专家混合(MoE)语言模型,每次生
- 支持生成式 AI:聊天与文档检索的结合
drebander
AI编程人工智能springAI
生成式AI已成为现代应用的重要组成部分,从实时聊天到文档检索,再到智能问答系统,其核心是能够理解上下文并生成有用的回答。在生成式AI中,聊天会话内存(ChatConversationMemory)和检索增强生成(RAG,RetrievalAugmentedGeneration)是两个关键功能,分别解决了上下文管理和大规模文档检索问题。本文将介绍SpringAI如何支持这两个功能,并通过实际应用场景
- AI学习指南Ollama篇-Ollama简介
俞兆鹏
AI学习指南人工智能ollama
一、定义大语言模型(LLM)是一种基于深度学习的自然语言处理模型,能够生成文本、回答问题、翻译语言、撰写代码等。这些模型通过海量的文本数据进行训练,学习语言的模式和结构,从而能够生成自然流畅的文本内容。随着技术的不断进步,大语言模型在各个领域都展现出了巨大的潜力。二、应用场景大语言模型的应用场景非常广泛,以下是一些常见的例子:聊天机器人:通过自然语言理解与生成,为用户提供智能对话服务。内容创作:帮
- 面试官说 “你还有什么问题想问的” ,作为一名程序员该如何回答?
Misdirection_XG
面试经验分享androidjava
前言程序员面试时经常会听到面试官说一些套话,比如“今天的面试就到这里了,回去等通知吧”,“你还有什么问题想问我的吗”,“如果这道题不会做,那么我们也可以换一道”今天我们要说的是大多数面试官都会说的一句话“你还有什么问题想问的?”这是一个老生常谈的问题,之前经历过不少面试,针对这个问题我也做过很多不同的回答,当然也参考了其他人的一些建议,我这里总结了几种回答的方法,仅供大家参考。1、没有了这听起来是
- 【NTN 卫星通信】关于卫星通信的一次访谈
一只好奇的猫2
NTN卫星通信卫星通信NTNstarlink波束覆盖
1概述 通过CSDN的途径,有个咨询公司找到我,说是有投资公司看到我的博客,希望做一次访谈,我回答了10个问题,现在发到博客上;很多观点都是自己根据经验拍的,并没有严格的计算,有兴趣的看看就好,有些问题还挺有趣的。2访谈问题以及回复1、对于一个信号发生设备,如通信基站,其理论最大信道容量(网速,bit/s)和其通信频率(Hz)、功率(W)的数学关系是什么,能否用公式表示。答复:这个问题可以直接由
- Hibernate、JPA、Spring DATA JPA、Hibernate 代理和架构
小蜗牛慢慢爬行
hibernate架构java
大家好,今天,我们将讨论Hibernate和JPA架构。在开始我们的文章之前,我想回答一个重要的问题:为什么我们需要使用Hibernate、EclipseLink、EFcore等ORM工具?事实上,这是一个非常好的问题。我们开发人员通常有几个月的时间来创建一个新项目,或者有两周的时间来为我们的业务逻辑添加新功能。当我们考虑这个时间表时,为我们的业务逻辑编写SQL代码需要花费时间;因此,ORM工具的
- 奇怪的比赛(Python,递归,状态压缩动态规划dp)
不染_是非
python算法python动态规划算法蓝桥杯
目录前言:题目:思路:递归:代码及详细注释:状态压缩dp:代码及详细注释:总结:前言:这道题原本是蓝桥上的题,现在搜不到了,网上关于此题的讲解更是寥寥无几,仅有的讲解也只是递归思想,python讲解和状态压缩dp的解决方法都没有,这里就带大家用状态压缩dp方法来解决此题。题目:大奖赛计分规则:每位选手需要回答10个问题(其编号为1到10),越后面越有难度。答对的,当前分数翻倍;答错了,则扣掉与题号
- 局域网用MAC通讯为什么还要IP?
sun shang chao
计算机网络
虽然这个问题很傻,但是我还是喜欢你这样的问题。网络是分层的,从应用层到物理层各层有各层的功能,如果一个层次没有配置就没法调用下一层的功能。因此,如果你没有配置网络层的IP地址,就没法调用数据链路层的MAC地址进行通信。追问那这样局域网就不是通过MAC通讯的了吗?要IP才能调用MAC,那就是通过IP通讯了啊回答LAN中是采用MAC通信,但是上层协议没法直接调用MAC协议,必须使用ARP协议将IP地址
- 使用Dify搭建企业知识库聊天机器人
大模型产品经理
机器人人工智能语言模型算法自然语言处理面试
本文简介在当今数字化时代,企业知识库的建设和维护对于提升工作效率和服务质量至关重要。AI聊天机器人作为知识库的交互界面,可以提供24/7的即时服务。本文将介绍如何使用Dify这一工具快速搭建企业知识库聊天机器人,它可以当你企业的职能客服,也可以做你企业内部培训的老师。相比起传统的“智能客服”,加入大语言模型后的AI客服能更清楚用户想问什么问题,在匹配你提供的知识库的内容进行回答,这样看上去会更懂用
- 主管护师的备考方法有哪些?
Y9918520
笔记经验分享教育电商学习方法
这不就到我擅长的领域了吗,都让让让我来回答。本人三线城市二甲医院外科护士一枚,上上个月刚被聘任主管护师,工资也小涨了那么一些些,说实话我都没想到会这么顺利,因为科室里有的前辈考了三年都没考过,所以我一直觉得考试非常难,上考场的之前只敢跟别人说自己是裸考,没想到居然顺利地上岸了,后来我总结了一下,其实备考主管护师并不在于学了多长时间、而是在于有没有认真备考、能不能好好利用资源。下面我就简单总结一下我
- 国内的AI大模型有可能超过ChatGPT吗?
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能深度学习AI写作AIGC
这是一个非常有前瞻性和现实意义的问题。要回答国内AI是否有可能超过ChatGPT,我们需要从多个方面来分析,包括技术基础、数据资源、应用场景、政策支持以及人才储备等。以下是对这一问题的详细探讨:1.技术基础(1)现状国内AI技术:国内的AI技术发展迅速,尤其在深度学习、自然语言处理(NLP)和计算机视觉等领域已经取得了显著进展。例如,百度的文心一言、阿里的通义千问等大语言模型(LLM)已经在技术上
- 2023第二十届华为杯研究生数学建模竞赛C题思路解析及代码
HeartOfDog
数学建模华为
已更新C题包括成品论文等全部内容———————————————老粉可能知道,我是为爱发电,一般分享完思路偶尔会做对应的建模(一般都是帮助同门师兄妹情况下),杜绝各位被骗,由于个人工作问题,我尽可能在比赛期间更新思路,建议收藏或者关注。注:2023.9.22更新,有许多同学私信我说希望发一些论文模板等资料和进度分享,有时间的话会在里边上传一些资料、回答问题737.388.193,去掉符号,或点击此处
- 2025年国内外AI大模型的API接口网址整理
weixin_56968280
人工智能语言模型
本文将盘点国内外的知名度较高的AI大模型平台,其中包括AI大语言模型和AI多模态模型,方便大家一探究竟。AI大模型的api接口有哪些作用?智能写作:可以帮忙写文章、写小说、生成广告文案、起标题,还能改写文字让内容更吸引人。实时聊天:用于做聊天机器人,比如AI角色扮演、社交陪伴AI,甚至语音助手。知识问答:像百科一样快速回答各种问题,或者为特定领域(医疗、法律等)提供专业建议。教育学习:帮助学生做题
- 前端力扣刷题 | 1:Hot100之 哈希
酒酿泡芙1217
力扣hot100哈希算法leetcode前端
1.两数之和给定一个整数数组nums和一个整数目标值target,请你在该数组中找出和为目标值target的那两个整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案,并且你不能使用两次相同的元素。你可以按任意顺序返回答案。示例:输入:nums=[2,7,11,15],target=9输出:[0,1]解释:因为nums[0]+nums[1]==9,返回[0,1]。法一:暴力解法vartw
- 你知道吗?其实这些都是AI——智能聊天机器人
贫苦游商
人工智能机器人机器学习AIGC制造
智能聊天机器人AI:优化用户体验的智能助手在现代的数字化生活中,智能聊天机器人已经成为许多中国社交平台上不可或缺的一部分。这些机器人通过人工智能技术的支持,为用户提供各种互动服务,从回答常见问题到提供个性化建议,极大地提升了用户体验和平台的服务质量。智能聊天机器人AI的核心在于其强大的自然语言处理能力。通过分析用户的输入文本,这些系统能够理解用户的意图,并生成相应的回复。例如,当用户在购物平台上询
- 66道软件工程面试八股文(答案、分析和深入提问)整理
ocean2103
面试题软件工程面试职场和发展
1.软件测试的策略是什么?回答软件测试的策略是确保软件产品的质量和稳定性,以便满足用户需求和期望。下面是一些常见的软件测试策略:手动测试与自动化测试:手动测试:测试人员手动执行测试用例,以发现软件缺陷。自动化测试:使用自动化工具执行测试,提高效率和可重复性,尤其适用于回归测试。黑盒测试与白盒测试:黑盒测试:关注于软件的功能和输出,不考虑内部实现细节。白盒测试:关注软件内部的逻辑结构,测试代码的每个
- 10道计算机组成原理面试八股文(答案、分析和深入提问)整理
ocean2103
面试题面试javaspringboot
1.解释缓存(Cache)的工作原理及其类型。回答缓存(Cache)是计算机系统中用于提高数据访问速度的一种临时存储器。它位于中央处理器(CPU)与主存(RAM)之间,旨在减少CPU对主存的访问延迟,从而加速程序运行。缓存的工作原理局部性原理:时间局部性:如果某个数据被访问,那么它在近期内很可能会再次被访问。空间局部性:如果某个数据被访问,那么它附近的数据也很可能在不久的将来被访问。存储结构:缓存
- 282道Python面试八股文(答案、分析和深入提问)整理
ocean2103
面试题python面试开发语言
1.请解释Python中的模块和包。回答在Python中,模块和包是组织代码的重要工具,它们有助于代码的重用和结构化。模块(Module)模块是一个包含Python代码的文件,通常以.py作为文件扩展名。模块可以定义函数、类和变量,也可以包含可执行的代码。通过模块,可以将相关的功能分组到一个文件中,从而使得代码更加结构化和可维护。创建和使用模块创建模块:你可以创建一个Python文件(例如mymo
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc