α \alpha α | \alpha |
---|---|
β \beta β | \beta |
γ \gamma γ | \gamma |
δ \delta δ | \delta |
ϵ \epsilon ϵ 或 ε \varepsilon ε | \epsilon 或 \varepsilon |
ζ \zeta ζ | \zeta |
η \eta η | \eta |
θ \theta θ 或 ϑ \vartheta ϑ | \theta 或 \vartheta |
ι \iota ι | \iota |
κ \kappa κ 或 ϰ \varkappa ϰ | \kappa 或 \varkappa |
λ \lambda λ | \lambda |
μ \mu μ | \mu |
ν \nu ν | \nu |
ξ \xi ξ | \xi |
ο \omicron ο | \omicron |
π \pi π 或 ϖ \varpi ϖ | \pi 或 \varpi |
ρ \rho ρ 或 ϱ \varrho ϱ | \rho 或 \varrho |
σ \sigma σ 或 ς \varsigma ς | \sigma 或 \varsigma |
τ \tau τ | \tau |
υ \upsilon υ | \upsilon |
ϕ \phi ϕ 或 φ \varphi φ | \phi 或 \varphi |
χ \chi χ | \chi |
ψ \psi ψ | \psi |
ω \omega ω | \omega |
ϝ \digamma ϝ | \digamma |
$$
\times
$$
× \times ×
$$
\cdot
$$
⋅ \cdot ⋅
$$
\ast
$$
∗ \ast ∗
$$
\div
$$
÷ \div ÷
$$
\pm
$$
± \pm ±
$$
\mp
$$
∓ \mp ∓
$$
\sqrt{x}
$$
x \sqrt{x} x
$$
\sqrt[n]{x}
$$
x n \sqrt[n]{x} nx
$$
\leq
$$
≤ \leq ≤
$$
\geq
$$
≥ \geq ≥
$$
\neq
$$
≠ \neq =
$$
\approx
$$
≈ \approx ≈
$$
\ll
$$
≪ \ll ≪
$$
\gg
$$
≫ \gg ≫
$$
\set{x \mid P(x)}
$$
{ x ∣ P ( x ) } \set{x \mid P(x)} {x∣P(x)}
$$
\emptyset
$$
∅ \emptyset ∅
$$
\in
$$
∈ \in ∈
$$
\notin
$$
∉ \notin ∈/
$$
\subseteq
$$
⊆ \subseteq ⊆
$$
\supseteq
$$
⊇ \supseteq ⊇
$$
\subset
$$
⊂ \subset ⊂
$$
\subsetneqq
$$
⫋ \subsetneqq ⫋
$$
\subsetneq
$$
⊊ \subsetneq ⊊
$$
\supset
$$
⊃ \supset ⊃
$$
\supsetneqq
$$
⫌ \supsetneqq ⫌
$$
\supsetneq
$$
⊋ \supsetneq ⊋
$$
\cup
$$
∪ \cup ∪
$$
\displaystyle\bigcup\limits_{i = 1}^{n}{A_{i}}
$$
⋃ i = 1 n A i \displaystyle\bigcup\limits_{i = 1}^{n}{A_{i}} i=1⋃nAi
$$
\cap
$$
∩ \cap ∩
$$
\displaystyle\bigcap\limits_{i = 1}^{n}{A_{i}}
$$
⋂ i = 1 n A i \displaystyle\bigcap\limits_{i = 1}^{n}{A_{i}} i=1⋂nAi
$$
\bar{A}
$$
A ˉ \bar{A} Aˉ
$$
\oplus
$$
⊕ \oplus ⊕
$$
\lnot
$$
¬ \lnot ¬
$$
\wedge
$$
∧ \wedge ∧
$$
\vee
$$
∨ \vee ∨
$$
\rightarrow
$$
→ \rightarrow →
$$
\leftrightarrow
$$
↔ \leftrightarrow ↔
$$
\oplus
$$
⊕ \oplus ⊕
$$
\forall
$$
∀ \forall ∀
$$
\exist
$$
∃ \exist ∃
$$
\left(\substack{x_{1} \\ x_{2} \\ \vdots \\ x_{n}}\right)
$$
( x 1 x 2 ⋮ x n ) \left(\substack{x_{1} \\ x_{2} \\ \vdots \\ x_{n}}\right) x1x2⋮xn
$$
\left[\substack{x_{1} \\ x_{2} \\ \vdots \\ x_{n}}\right]
$$
[ x 1 x 2 ⋮ x n ] \left[\substack{x_{1} \\ x_{2} \\ \vdots \\ x_{n}}\right] x1x2⋮xn
$$
\left\{\substack{x_{1} \\ x_{2} \\ \vdots \\ x_{n}}\right\}
$$
{ x 1 x 2 ⋮ x n } \left\{\substack{x_{1} \\ x_{2} \\ \vdots \\ x_{n}}\right\} ⎩ ⎨ ⎧x1x2⋮xn⎭ ⎬ ⎫
$$
\left\langle\substack{x_{1} \\ x_{2} \\ \vdots \\ x_{n}}\right\rangle
$$
⟨ x 1 x 2 ⋮ x n ⟩ \left\langle\substack{x_{1} \\ x_{2} \\ \vdots \\ x_{n}}\right\rangle ⟨x1x2⋮xn⟩
$$
\overbrace{A \times A \times \cdots \times A}^{k} = A^{k}
$$
A × A × ⋯ × A ⏞ k = A k \overbrace{A \times A \times \cdots \times A}^{k} = A^{k} A×A×⋯×A k=Ak
$$
\underbrace{A \times A \times \cdots \times A}_{k} = A^{k}
$$
A × A × ⋯ × A ⏟ k = A k \underbrace{A \times A \times \cdots \times A}_{k} = A^{k} k A×A×⋯×A=Ak
$$
\cdots
$$
⋯ \cdots ⋯
$$
\ldots
$$
… \ldots …
$$
\vdots
$$
⋮ \vdots ⋮
$$
\ddots
$$
⋱ \ddots ⋱
$$
\rightarrow
$$
→ \rightarrow →
$$
\Rightarrow
$$
⇒ \Rightarrow ⇒
$$
\xrightarrow[G]{*}
$$
→ G ∗ \xrightarrow[G]{*} ∗G
$$
\xRightarrow[G]{*}
$$
⇒ G ∗ \xRightarrow[G]{*} ∗G
$$
\leftarrow
$$
← \leftarrow ←
$$
\Leftarrow
$$
⇐ \Leftarrow ⇐
$$
\xleftarrow[G]{*}
$$
← G ∗ \xleftarrow[G]{*} ∗G
$$
\xLeftarrow[G]{*}
$$
⇐ G ∗ \xLeftarrow[G]{*} ∗G
$$
\leftrightarrow
$$
↔ \leftrightarrow ↔
$$
\Leftrightarrow
$$
⇔ \Leftrightarrow ⇔
$$
\infty
$$
∞ \infty ∞
$$
\sim
$$
∼ \sim ∼
$$
\partial
$$
∂ \partial ∂
$$
\circ
$$
∘ \circ ∘
$$
\mid
$$
∣ \mid ∣
$$
\vdash
$$
⊢ \vdash ⊢
$$
x^{2}
$$
x 2 x^{2} x2
$$
\bar{A}
$$
A ˉ \bar{A} Aˉ
$$
\overline{ABC}
$$
A B C ‾ \overline{ABC} ABC
$$
\hat{a}
$$
a ^ \hat{a} a^
$$
\widetilde{a}
$$
a ~ \widetilde{a} a
$$
\vec{a}
$$
a ⃗ \vec{a} a
$$
\overbrace{A \times A \times \cdots \times A}^{k} = A^{k}
$$
A × A × ⋯ × A ⏞ k = A k \overbrace{A \times A \times \cdots \times A}^{k} = A^{k} A×A×⋯×A k=Ak
$$
x_{0}
$$
x 0 x_{0} x0
$$
\underbrace{A \times A \times \cdots \times A}_{k} = A^{k}
$$
A × A × ⋯ × A ⏟ k = A k \underbrace{A \times A \times \cdots \times A}_{k} = A^{k} k A×A×⋯×A=Ak
$$
\displaystyle\int_{0}^{\frac{\pi}{2}}{\sin{x} \mathrm{d}x} = 1
\tag{1}
$$
∫ 0 π 2 sin x d x = 1 (1) \displaystyle\int_{0}^{\frac{\pi}{2}}{\sin{x} \mathrm{d}x} = 1 \tag{1} ∫02πsinxdx=1(1)
$$
\displaystyle\cfrac{1}{2}
$$
1 2 \displaystyle\cfrac{1}{2} 21
$$
\displaystyle\frac{1}{2}
$$
1 2 \displaystyle\frac{1}{2} 21
$$
\begin{cases}
a_{11} x_{1} + a_{12} x_{2} = b_{1} \\
a_{21} x_{1} + a_{22} x_{2} = b_{2}
\end{cases}
$$
{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \begin{cases} a_{11} x_{1} + a_{12} x_{2} = b_{1} \\ a_{21} x_{1} + a_{22} x_{2} = b_{2} \end{cases} {a11x1+a12x2=b1a21x1+a22x2=b2
$$
f(n) =
\begin{cases}
n / 2 , & \text{if} \ n \ \text{is even} \\
3n + 1 , & \text{if} \ n \ \text{is odd}
\end{cases}
$$
f ( n ) = { n / 2 , if n is even 3 n + 1 , if n is odd f(n) = \begin{cases} n / 2 , & \text{if} \ n \ \text{is even} \\ 3n + 1 , & \text{if} \ n \ \text{is odd} \end{cases} f(n)={n/2,3n+1,if n is evenif n is odd
sin θ \sin{\theta} sinθ | \sin{\theta} |
---|---|
cos θ \cos{\theta} cosθ | \cos{\theta} |
tan θ \tan{\theta} tanθ | \tan{\theta} |
$$
\left\lceil \displaystyle\cfrac{1}{2} \right\rceil = 1
$$
⌈ 1 2 ⌉ = 1 \left\lceil \displaystyle\cfrac{1}{2} \right\rceil = 1 ⌈21⌉=1
$$
\left\lfloor \displaystyle\cfrac{1}{2} \right\rfloor = 0
$$
⌊ 1 2 ⌋ = 0 \left\lfloor \displaystyle\cfrac{1}{2} \right\rfloor = 0 ⌊21⌋=0
$$
\displaystyle\sum\limits_{i = 0}^{n}{C_{n}^{i}} = 2^{n}
$$
∑ i = 0 n C n i = 2 n \displaystyle\sum\limits_{i = 0}^{n}{C_{n}^{i}} = 2^{n} i=0∑nCni=2n
$$
\displaystyle\prod\limits_{i = 1}^{n}{n} = n!
$$
∏ i = 1 n n = n ! \displaystyle\prod\limits_{i = 1}^{n}{n} = n! i=1∏nn=n!
$$
\lim\limits_{x \rightarrow \infty}{\displaystyle\cfrac{1}{x}}
$$
lim x → ∞ 1 x \lim\limits_{x \rightarrow \infty}{\displaystyle\cfrac{1}{x}} x→∞limx1
$$
F(+\infty , +\infty) = \lim_{\substack{x \rightarrow +\infty \\ y \rightarrow +\infty}}{F(x , y)}
$$
F ( + ∞ , + ∞ ) = lim x → + ∞ y → + ∞ F ( x , y ) F(+\infty , +\infty) = \lim_{\substack{x \rightarrow +\infty \\ y \rightarrow +\infty}}{F(x , y)} F(+∞,+∞)=x→+∞y→+∞limF(x,y)
$$
\displaystyle\int_{0}^{\frac{\pi}{2}}{\sin{x} \mathrm{d}x} = 1
$$
∫ 0 π 2 sin x d x = 1 \displaystyle\int_{0}^{\frac{\pi}{2}}{\sin{x} \mathrm{d}x} = 1 ∫02πsinxdx=1
$$
P\set{(X , Y) \in D} = \displaystyle\iint\limits_{D}{f(x , y) \mathrm{d}x \mathrm{d}y}
$$
P { ( X , Y ) ∈ D } = ∬ D f ( x , y ) d x d y P\set{(X , Y) \in D} = \displaystyle\iint\limits_{D}{f(x , y) \mathrm{d}x \mathrm{d}y} P{(X,Y)∈D}=D∬f(x,y)dxdy
$$
\begin{vmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{vmatrix}
$$
∣ a 11 a 12 a 21 a 22 ∣ \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} a11a21a12a22
$$
\left(
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right)
$$
( 1 2 3 4 5 6 7 8 9 ) \left( \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right) 147258369
$$
\left[
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right]
$$
[ 1 2 3 4 5 6 7 8 9 ] \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right] 147258369
$$
\left\{
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right\}
$$
{ 1 2 3 4 5 6 7 8 9 } \left\{ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right\} ⎩ ⎨ ⎧147258369⎭ ⎬ ⎫
$$
\left(
\begin{matrix}
1 & 2 & \cdots & 5 \\
6 & 7 & \cdots & 10 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha & \alpha + 1 & \cdots & \alpha + 4
\end{matrix}
\right)
$$
( 1 2 ⋯ 5 6 7 ⋯ 10 ⋮ ⋮ ⋱ ⋮ α α + 1 ⋯ α + 4 ) \left( \begin{matrix} 1 & 2 & \cdots & 5 \\ 6 & 7 & \cdots & 10 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha & \alpha + 1 & \cdots & \alpha + 4 \end{matrix} \right) 16⋮α27⋮α+1⋯⋯⋱⋯510⋮α+4
$$
\begin{array}{c | l c c c r} # {c | l c c c r} 表示共 6 列, 在第 1 列后插入竖线, l、c、r 分别表示左对齐、居中对齐、右对齐
& y_{1} & y_{2} & \cdots & y_{j} & \cdots \\
\hline # 表示插入横线
x_{1} & p_{11} & p_{12} & \cdots & p_{1j} & \cdots \\
x_{2} & p_{21} & p_{22} & \cdots & p_{2j} & \cdots \\
\vdots & \vdots & \vdots & & \vdots & \\
x_{i} & p_{i1} & p_{i2} & \cdots & p_{ij} & \cdots \\
\vdots & \vdots & \vdots & & \vdots &
\end{array}
$$
y 1 y 2 ⋯ y j ⋯ x 1 p 11 p 12 ⋯ p 1 j ⋯ x 2 p 21 p 22 ⋯ p 2 j ⋯ ⋮ ⋮ ⋮ ⋮ x i p i 1 p i 2 ⋯ p i j ⋯ ⋮ ⋮ ⋮ ⋮ \begin{array}{c | l c c c r} & y_{1} & y_{2} & \cdots & y_{j} & \cdots \\ \hline x_{1} & p_{11} & p_{12} & \cdots & p_{1j} & \cdots \\ x_{2} & p_{21} & p_{22} & \cdots & p_{2j} & \cdots \\ \vdots & \vdots & \vdots & & \vdots & \\ x_{i} & p_{i1} & p_{i2} & \cdots & p_{ij} & \cdots \\ \vdots & \vdots & \vdots & & \vdots & \end{array} x1x2⋮xi⋮y1p11p21⋮pi1⋮y2p12p22⋮pi2⋮⋯⋯⋯⋯yjp1jp2j⋮pij⋮⋯⋯⋯⋯
$$
\mathcal{A \ B \ C \ D \ E \ F \ G \ H \ I \ J \ K \ L \ M \ N \ O \ P \ Q \ R \ S \ T \ U \ V \ W \ X \ Y \ Z}
$$
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathcal{A \ B \ C \ D \ E \ F \ G \ H \ I \ J \ K \ L \ M \ N \ O \ P \ Q \ R \ S \ T \ U \ V \ W \ X \ Y \ Z} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
$$
\mathscr{A \ B \ C \ D \ E \ F \ G \ H \ I \ J \ K \ L \ M \ N \ O \ P \ Q \ R \ S \ T \ U \ V \ W \ X \ Y \ Z}
$$
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathscr{A \ B \ C \ D \ E \ F \ G \ H \ I \ J \ K \ L \ M \ N \ O \ P \ Q \ R \ S \ T \ U \ V \ W \ X \ Y \ Z} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
$$
\mathbb{A \ B \ C \ D \ E \ F \ G \ H \ I \ J \ K \ L \ M \ N \ O \ P \ Q \ R \ S \ T \ U \ V \ W \ X \ Y \ Z}
$$
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathbb{A \ B \ C \ D \ E \ F \ G \ H \ I \ J \ K \ L \ M \ N \ O \ P \ Q \ R \ S \ T \ U \ V \ W \ X \ Y \ Z} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
$$
\pmb{A \ B \ C \ D \ E \ F \ G \ H \ I \ J \ K \ L \ M \ N \ O \ P \ Q \ R \ S \ T \ U \ V \ W \ X \ Y \ Z}
$$
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \pmb{A \ B \ C \ D \ E \ F \ G \ H \ I \ J \ K \ L \ M \ N \ O \ P \ Q \ R \ S \ T \ U \ V \ W \ X \ Y \ Z} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
$$
\mathrm{A \ B \ C \ D \ E \ F \ G \ H \ I \ J \ K \ L \ M \ N \ O \ P \ Q \ R \ S \ T \ U \ V \ W \ X \ Y \ Z}
$$
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathrm{A \ B \ C \ D \ E \ F \ G \ H \ I \ J \ K \ L \ M \ N \ O \ P \ Q \ R \ S \ T \ U \ V \ W \ X \ Y \ Z} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z