pytorch debug 常用工具

自动辨识图像格式可视化

import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

def convert_to_numpy(image_input):
    """
    自动检测输入图像类型,并将其转换为NumPy数组。
    """
    if isinstance(image_input, np.ndarray):
        # 输入已经是NumPy数组,直接返回
        return image_input
    elif 'Tensor' in str(type(image_input)):
        # 输入是Tensor类型
        # 检查是否需要转换(依赖于Tensor所属的库,如PyTorch, TensorFlow等)
        if hasattr(image_input, 'detach'):
            # 假设是PyTorch Tensor
            image_input = image_input.detach().cpu().numpy()
        else:
            # 假设是TensorFlow Tensor或其他框架的Tensor
            image_input = image_input.numpy()
        # 如果Tensor有通道维度在最前面(如CHW),则需要转换为HWC
        if image_input.ndim == 3 and image_input.shape[0] in (1, 3):
            image_input = image_input.transpose(1, 2, 0)
    elif isinstance(image_input, Image.Image):
        # 输入是Pillow图像,转换为NumPy数组
        image_input = np.array(image_input)
    else:
        raise TypeError("Unsupported image type")
    
    # 如果图像是单通道的,且在最后一个维度(例如HxWx1),去掉该维度
    if image_input.ndim == 3 and image_input.shape[-1] == 1:
        image_input = image_input.squeeze(-1)
    image_np = image_input 
    if image_np.ndim == 3 and image_np.shape[-1] == 3:
        plt.imshow(image_np)
    else:
        plt.imshow(image_np, cmap='viridis')
    plt.title(title)
    plt.axis('off')
    plt.show()


def visualize_image(image_np, title="Image"):
    """
    可视化NumPy格式的图像
    """
    if image_np.ndim == 3 and image_np.shape[-1] == 3:
        plt.imshow(image_np)
    else:
        plt.imshow(image_np, cmap='gray')
    plt.title(title)
    plt.axis('off')
    plt.show()

# 示例使用
# image_tensor, image_np, image_pil 分别代表Tensor, NumPy数组, Pillow图像的输入
# 将它们转换为NumPy数组
# image_np = convert_to_numpy(image_tensor)
# image_np = convert_to_numpy(image_np)
# image_np = convert_to_numpy(image_pil)

# # 可视化图像
# visualize_image(image_np)

可视化

张量可视化

import torch
from torchvision.transforms.functional import to_pil_image
from PIL import Image
def tensor_to_pil(tensor):
    # 确保tensor是在CPU上
    tensor = tensor.cpu()
    
    # 如果tensor有一个批次维度,去除它
    if tensor.dim() == 4 and tensor.shape[0] == 1:
        tensor = tensor.squeeze(0)
    
    # 转换为PIL图像
    pil_image = to_pil_image(tensor)
    
    # 返回PIL图像
    return pil_image

tensor_to_pil( ).show()

可视化已经图像信息

def draw_np(pic_np):
    pic_np = np.squeeze(pic_np)
    plt.imshow(pic_np)
    # 隐藏坐标轴
    plt.axis('on')
    # 显示数据标尺
    plt.colorbar()
    # 显示图像
    plt.show()

def get_image_info(image):
    # 获取图像的模式、格式和尺寸
    mode = image.mode
    format_ = image.format
    size = image.size

    # 根据图像模式推断每个通道的位数
    if mode in ("1", "L", "P"):
        bits_per_channel = 8  # 通常是8位
    elif mode == "RGB":
        bits_per_channel = 8  # 通常是8位,3通道
    elif mode == "RGBA":
        bits_per_channel = 8  # 通常是8位,4通道
    elif mode == "I":
        bits_per_channel = 32 # 整数像素模式
    elif mode == "F":
        bits_per_channel = 32 # 浮点像素模式
    else:
        bits_per_channel = 'unknown'  # 未知或不常见的模式

    # 计算总位数
    total_bits = image.getbands().__len__() * bits_per_channel

    # 打印图像信息
    print(f"Image mode: {mode}")
    print(f"Image format: {format_}")
    print(f"Image size: {size}")
    print(f"Bits per channel: {bits_per_channel}")
    print(f"Total bits per pixel: {total_bits}")


#%%
import numpy as np

def get_array_info(np_array):
    """
    获取并打印NumPy数组的详细信息。

    参数:
    np_array: NumPy数组。
    """
    # 获取数组的形状
    shape = np_array.shape

    # 获取数组的总元素数量
    size = np_array.size

    # 获取数组的数据类型
    dtype = np_array.dtype

    # 获取数组单个元素的大小(以字节为单位)
    itemsize = np_array.itemsize

    # 获取数组的维度数量
    ndim = np_array.ndim

    # 获取数组的总字节数
    nbytes = np_array.nbytes

    # 打印数组信息
    print(f"Array Shape: {shape}")
    print(f"Array Size: {size}")
    print(f"Array Data Type: {dtype}")
    print(f"Item Size: {itemsize} bytes")
    print(f"Array Dimensions: {ndim}")
    print(f"Total Bytes: {nbytes} bytes")
def read_pic(path_pic):
    # 加载图像
    image = Image.open(path_pic)
    print(image.size)
    print(image.format)
    return image

def pic_to_np(pic):
    np_depth = np.array(pic)
    return np_depth

def draw_np(pic_np):
    pic_np = np.squeeze(pic_np)
    plt.imshow(pic_np)
    # 隐藏坐标轴
    plt.axis('on')
    # 显示数据标尺
    plt.colorbar()
    # 显示图像
    plt.show()
    
def pic_info(path):
    raw_image = read_pic(path)
    raw_np = pic_to_np(raw_image)
    get_image_info(raw_image)
    get_array_info(raw_np)
    raw_image.show()
    draw_np(raw_np)

你可能感兴趣的:(pytorch,人工智能,python)