进程
程序运行中会有一个默认的进程,如果想要创建子进程,需要用miltiprocessing实现。
import multiprocessing
import time
# 跳舞任务
def dance():
for i in range(5):
print("跳舞中...")
time.sleep(0.2)
# 唱歌任务
def sing():
for i in range(5):
print("唱歌中...")
time.sleep(0.2)
if __name__ == '__main__': # 主进程在执行主程序
# 创建跳舞的子进程
# group: 表示进程组,目前只能使用None
# target: 表示执行的目标任务名(函数名、方法名)
# name: 进程名称, 默认是Process-1, .....
dance_process = multiprocessing.Process(target=dance, name="myprocess1") #这里创建子进程
sing_process = multiprocessing.Process(target=sing) # 这里创建另外一个子进程
# 启动子进程执行对应的任务
dance_process.start()
sing_process.start()
具体哪个进程先执行,是由操作系统取调度的,程序是不能决定的。
获取进程编号
os.getpid()
获取当前进程编号,os.getppid()
获取父进程编号。multiprocessing.current_process()
获取当前进程对象。
import multiprocessing
import time
import os
# 跳舞任务
def dance():
# 获取当前进程的编号
print("dance:", os.getpid())
# 获取当前进程
print("dance:", multiprocessing.current_process())
# 获取父进程编号
print('parent:',os.getppid())
for i in range(5):
print("跳舞中...")
time.sleep(0.2)
# 扩展:根据进程编号杀死指定进程
os.kill(os.getpid(), 9)
# 唱歌任务
def sing():
# 获取当前进程的编号
print("sing:", os.getpid())
# 获取当前进程
print("sing:", multiprocessing.current_process())
for i in range(5):
print("唱歌中...")
time.sleep(0.2)
if __name__ == '__main__':
# 获取当前进程的编号
print("main:", os.getpid())
# 获取当前进程
print("main:", multiprocessing.current_process())
# 创建跳舞的子进程
# group: 表示进程组,目前只能使用None
# target: 表示执行的目标任务名(函数名、方法名)
# name: 进程名称, 默认是Process-1, .....
dance_process = multiprocessing.Process(target=dance, name="myprocess1")
sing_process = multiprocessing.Process(target=sing)
# 启动子进程执行对应的任务
dance_process.start()
sing_process.start()
进程执行带有参数的任务
Process类执行任务并给任务传参数有两种方式:
- args 表示以元组的方式给执行任务传参(位置参数)
- kwargs 表示以字典方式给执行任务传参(关键字参数)
- args参数的使用
import multiprocessing
import time
# 带有参数的任务
def task(count):
for i in range(count):
print("任务执行中..")
time.sleep(0.2)
else:
print("任务执行完成")
if __name__ == '__main__':
# 创建子进程
# args: 以元组的方式给任务传入参数
sub_process = multiprocessing.Process(target=task, args=(5,))
sub_process.start()
- kwargs参数的使用
import multiprocessing
import time
# 带有参数的任务
def task(count):
for i in range(count):
print("任务执行中..")
time.sleep(0.2)
else:
print("任务执行完成")
if __name__ == '__main__':
# 创建子进程
# kwargs: 表示以字典方式传入参数
sub_process = multiprocessing.Process(target=task, kwargs={"count": 3})
sub_process.start()
进程注意点
进程之间不共享全局变量
import multiprocessing
import time
# 定义全局变量
g_list = list()
# 添加数据的任务
def add_data():
for i in range(5):
g_list.append(i)
print("add:", i)
time.sleep(0.2)
# 代码执行到此,说明数据添加完成
print("add_data:", g_list)
def read_data():
print("read_data", g_list)
if __name__ == '__main__':
# 创建添加数据的子进程
add_data_process = multiprocessing.Process(target=add_data)
# 创建读取数据的子进程
read_data_process = multiprocessing.Process(target=read_data)
# 启动子进程执行对应的任务
add_data_process.start()
# 主进程等待添加数据的子进程执行完成以后程序再继续往下执行,读取数据
add_data_process.join()
read_data_process.start()
print("main:", g_list)
# 总结: 多进程之间不共享全局变量
add_data_process.join()
这句话表示主进程得等add_data_process进程执行完才能往下执行。
为什么不共享变量?
因为子进程其实就是主进程的一个副本,是对主进程资源进行拷贝。
注意:在windows中一定要写if __name__ == '__main__':
;这样子进程中就不会拷贝name=='__main'代码下面的代码。
主进程会等待子进程都执行结束后再结束
如果想要实现主进程结束,子进程也结束,有两种方法:
- 让子进程设置称为守护主进程,主进程退出,子进程立刻销毁。此时,子进程依赖于主进程
if __name__ == '__main__':
# 创建子进程
sub_process = multiprocessing.Process(target=task)
# 设置守护主进程,主进程退出子进程直接销毁,子进程的生命周期依赖与主进程
sub_process.daemon = True
sub_process.start()
- 退出主进程之前,将子进程销毁
import multiprocessing
import time
# 定义进程所需要执行的任务
def task():
for i in range(10):
print("任务执行中...")
time.sleep(0.2)
if __name__ == '__main__':
# 创建子进程
sub_process = multiprocessing.Process(target=task)
# 设置守护主进程,主进程退出子进程直接销毁,子进程的生命周期依赖与主进程
# sub_process.daemon = True
sub_process.start()
time.sleep(0.5)
print("over")
# 让子进程销毁
sub_process.terminate()
exit()
# 总结: 主进程会等待所有的子进程执行完成以后程序再退出
# 如果想要主进程退出子进程销毁,可以设置守护主进程或者在主进程退出之前让子进程销毁
线程(负责执行进程中的代码)
也是实现多任务的方式
线程是进程中执行代码的一个分支
线程是CPU调度的基本单位
每个进程至少都有一个线程,称为主线程
同一个进程中的线程可以实现资源共享
多线程的使用
import threading
import time
# 唱歌任务
def sing():
# 扩展: 获取当前线程
# print("sing当前执行的线程为:", threading.current_thread())
for i in range(3):
print("正在唱歌...%d" % i)
time.sleep(1)
# 跳舞任务
def dance():
# 扩展: 获取当前线程
# print("dance当前执行的线程为:", threading.current_thread())
for i in range(3):
print("正在跳舞...%d" % i)
time.sleep(1)
if __name__ == '__main__':
# 扩展: 获取当前线程
# print("当前执行的线程为:", threading.current_thread())
# 创建唱歌的线程
# target: 线程执行的函数名
sing_thread = threading.Thread(target=sing)
# 创建跳舞的线程
dance_thread = threading.Thread(target=dance)
# 开启线程
sing_thread.start()
dance_thread.start()
线程执行带有参数的任务
Thread类执行任务并给任务传参数有两种方式:
- args 表示以元组的方式给执行任务传参
- kwargs 表示以字典方式给执行任务传参
线程注意点
- 线程执行是无序的
- 主线程会等待所有子线程执行完成再结束
# 守护主线程方式1
sub_thread = threading.Thread(target=show_info, daemon=True)
# 设置成为守护主线程,主线程退出后子线程直接销毁不再执行子线程的代码
# 守护主线程方式2
# sub_thread.setDaemon(True)
- 线程之间共享全局变量
- 线程之间共享全局变量数据出现错误问题
解决办法:线程同步
线程等待(join)
互斥锁:对共享数据进行锁定,保证同一时刻只能有一个线程去操作。抢到锁的线程先执行,没有抢到的需要等待。
threading模块中定义了Lock变量,这个变量本质上是一个函数,通过调用这个函数可以获取一把互斥锁。
互斥锁使用步骤:
# 创建锁
mutex = threading.Lock()
# 上锁
mutex.acquire()
...这里编写代码能保证同一时刻只能有一个线程去操作, 对共享数据进行锁定...
# 释放锁
mutex.release()
注意点:
- acquire和release方法之间的代码同一时刻只能有一个线程去操作
- 如果在调用acquire方法的时候 其他线程已经使用了这个互斥锁,那么此时acquire方法会堵塞,直到这个互斥锁释放后才能再次上锁。
import threading
# 定义全局变量
g_num = 0
# 创建全局互斥锁
lock = threading.Lock()
# 循环一次给全局变量加1
def sum_num1():
# 上锁
lock.acquire()
for i in range(1000000):
global g_num
g_num += 1
print("sum1:", g_num)
# 释放锁
lock.release()
# 循环一次给全局变量加1
def sum_num2():
# 上锁
lock.acquire()
for i in range(1000000):
global g_num
g_num += 1
print("sum2:", g_num)
# 释放锁
lock.release()
if __name__ == '__main__':
# 创建两个线程
first_thread = threading.Thread(target=sum_num1)
second_thread = threading.Thread(target=sum_num2)
# 启动线程
first_thread.start()
second_thread.start()
# 提示:加上互斥锁,那个线程抢到这个锁我们决定不了,那线程抢到锁那个线程先执行,没有抢到的线程需要等待
# 加上互斥锁多任务瞬间变成单任务,性能会下降,也就是说同一时刻只能有一个线程去执行
总结
- 和计算密集型的相关操作使用多进程;如果IO密集型,使用多线程
- 多进程可以使用多核,资源开销大;而多线程不可以,资源开销小
- 多进程稳定性强,因为进程之间相互不影响