【flink番外篇】2、flink的23种算子window join 和interval join 数据倾斜、分区介绍及详细示例(1)- window join

Flink 系列文章

一、Flink 专栏

Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。

  • 1、Flink 部署系列
    本部分介绍Flink的部署、配置相关基础内容。

  • 2、Flink基础系列
    本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。

  • 3、Flik Table API和SQL基础系列
    本部分介绍Flink Table Api和SQL的基本用法,比如Table API和SQL创建库、表用法、查询、窗口函数、catalog等等内容。

  • 4、Flik Table API和SQL提高与应用系列
    本部分是table api 和sql的应用部分,和实际的生产应用联系更为密切,以及有一定开发难度的内容。

  • 5、Flink 监控系列
    本部分和实际的运维、监控工作相关。

二、Flink 示例专栏

Flink 示例专栏是 Flink 专栏的辅助说明,一般不会介绍知识点的信息,更多的是提供一个一个可以具体使用的示例。本专栏不再分目录,通过链接即可看出介绍的内容。

两专栏的所有文章入口点击:Flink 系列文章汇总索引


文章目录

  • Flink 系列文章
  • 一、maven依赖及User bean
    • 1、maven依赖
    • 2、User bean
  • 二、window join
    • 1、滚动 Window Join - TumblingEventTimeWindows
    • 2、滑动 Window Join - SlidingEventTimeWindows
    • 3、会话 Window Join - EventTimeSessionWindows
    • 4、TumblingEventTimeWindows示例
      • 1)、数据结构及bean
      • 2)、定义商品和订单数据源
      • 3)、Window Join实现方式一
      • 4)、WindowJoin实现方式二
      • 5)、运行结果


本文主要介绍Flink 的常用的operator window join 及详细示例。
如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。
本文除了maven依赖外,没有其他依赖。

本专题分为四篇文章介绍,即
【flink番外篇】2、flink的23种算子window join 和interval join 数据倾斜、分区介绍及详细示例(1)- window join
【flink番外篇】2、flink的23种算子window join 和interval join 数据倾斜、分区介绍及详细示例(2)- interval join
【flink番外篇】2、flink的23种算子window join 和interval join 数据倾斜、分区介绍及详细示例(3)- 数据倾斜处理、分区示例
【flink番外篇】2、flink的23种算子window join 和interval join 数据倾斜、分区介绍及详细示例-完整版

一、maven依赖及User bean

1、maven依赖

下文中所有示例都是用该maven依赖,除非有特殊说明的情况。

<properties>
        <encoding>UTF-8encoding>
        <project.build.sourceEncoding>UTF-8project.build.sourceEncoding>
        <maven.compiler.source>1.8maven.compiler.source>
        <maven.compiler.target>1.8maven.compiler.target>
        <java.version>1.8java.version>
        <scala.version>2.12scala.version>
        <flink.version>1.17.0flink.version>
    properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-clients_2.12artifactId>
            <version>${flink.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-scala_2.12artifactId>
            <version>${flink.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-javaartifactId>
            <version>${flink.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-streaming-scala_2.12artifactId>
            <version>${flink.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-streaming-java_2.12artifactId>
            <version>${flink.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-table-api-scala-bridge_2.12artifactId>
            <version>${flink.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-table-api-java-bridge_2.12artifactId>
            <version>${flink.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-table-planner-blink_2.12artifactId>
            <version>${flink.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-table-commonartifactId>
            <version>${flink.version}version>
        dependency>

        
        <dependency>
            <groupId>org.slf4jgroupId>
            <artifactId>slf4j-log4j12artifactId>
            <version>1.7.7version>
            <scope>runtimescope>
        dependency>
        <dependency>
            <groupId>log4jgroupId>
            <artifactId>log4jartifactId>
            <version>1.2.17version>
            <scope>runtimescope>
        dependency>

        <dependency>
            <groupId>org.projectlombokgroupId>
            <artifactId>lombokartifactId>
            <version>1.18.2version>
            <scope>providedscope>
        dependency>
        <dependency>
			<groupId>org.apache.hadoopgroupId>
			<artifactId>hadoop-commonartifactId>
			<version>3.1.4version>
		dependency>
		<dependency>
			<groupId>org.apache.hadoopgroupId>
			<artifactId>hadoop-clientartifactId>
			<version>3.1.4version>
		dependency>
		<dependency>
			<groupId>org.apache.hadoopgroupId>
			<artifactId>hadoop-hdfsartifactId>
			<version>3.1.4version>
		dependency>
		<dependency>
			<groupId>com.alibabagroupId>
			<artifactId>fastjsonartifactId>
			<version>1.2.44version>
		dependency>
    dependencies>

2、User bean

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

/**
 * @author alanchan
 *
 */
@Data
@AllArgsConstructor
@NoArgsConstructor
public class User {
	private int id;
	private String name;
	private String pwd;
	private String email;
	private int age;
	private double balance;
}

二、window join

Window join 作用在两个流中有相同 key 且处于相同窗口的元素上。这些窗口可以通过 window assigner 定义,并且两个流中的元素都会被用于计算窗口的结果。

两个流中的元素在组合之后,会被传递给用户定义的 JoinFunction 或 FlatJoinFunction,用户可以用它们输出符合 join 要求的结果。

常见的用例可以总结为以下代码:

stream.join(otherStream)
    .where(<KeySelector>)
    .equalTo(<KeySelector>)
    .window(<WindowAssigner>)
    .apply(<JoinFunction>);

语义上有一些值得注意的地方:

  • 从两个流中创建成对的元素与 inner-join 类似,即一个流中的元素在与另一个流中对应的元素完成 join 之前不会被输出。
  • 完成 join 的元素会将他们的 timestamp 设为对应窗口中允许的最大 timestamp。比如一个边界为 [5, 10) 窗口中的元素在 join 之后的 timestamp 为 9。

1、滚动 Window Join - TumblingEventTimeWindows

使用滚动 window join 时,所有 key 相同且共享一个滚动窗口的元素会被组合成对,并传递给 JoinFunction 或 FlatJoinFunction。因为这个行为与 inner join 类似,所以一个流中的元素如果没有与另一个流中的元素组合起来,它就不会被输出!
在这里插入图片描述
如图所示,我们定义了一个大小为 2 毫秒的滚动窗口,即形成了边界为 [0,1], [2,3], … 的窗口。图中展示了如何将每个窗口中的元素组合成对,组合的结果将被传递给 JoinFunction。注意,滚动窗口 [6,7] 将不会输出任何数据,因为绿色流当中没有数据可以与橙色流的 ⑥ 和 ⑦ 配对。

  • 示例代码
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
 
...

DataStream<Integer> orangeStream = ...;
DataStream<Integer> greenStream = ...;

orangeStream.join(greenStream)
    .where(<KeySelector>)
    .equalTo(<KeySelector>)
    .window(TumblingEventTimeWindows.of(Time.milliseconds(2)))
    .apply (new JoinFunction<Integer, Integer, String> (){
        @Override
        public String join(Integer first, Integer second) {
            return first + "," + second;
        }
    });

2、滑动 Window Join - SlidingEventTimeWindows

当使用滑动 window join 时,所有 key 相同且处于同一个滑动窗口的元素将被组合成对,并传递给 JoinFunction 或 FlatJoinFunction。当前滑动窗口内,如果一个流中的元素没有与另一个流中的元素组合起来,它就不会被输出!
注意,在某个滑动窗口中被 join 的元素不一定会在其他滑动窗口中被 join。
在这里插入图片描述
本例中我们定义了长度为两毫秒,滑动距离为一毫秒的滑动窗口,生成的窗口实例区间为 [-1, 0],[0,1],[1,2],[2,3], …。 X 轴下方是每个滑动窗口中被 join 后传递给 JoinFunction 的元素。图中可以看到橙色 ② 与绿色 ③ 在窗口 [2,3] 中 join,但没有与窗口 [1,2] 中任何元素 join。

  • 示例代码
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;

...

DataStream<Integer> orangeStream = ...;
DataStream<Integer> greenStream = ...;

orangeStream.join(greenStream)
    .where(<KeySelector>)
    .equalTo(<KeySelector>)
    .window(SlidingEventTimeWindows.of(Time.milliseconds(2) /* size */, Time.milliseconds(1) /* slide */))
    .apply (new JoinFunction<Integer, Integer, String> (){
        @Override
        public String join(Integer first, Integer second) {
            return first + "," + second;
        }
    });

3、会话 Window Join - EventTimeSessionWindows

使用会话 window join 时,所有 key 相同且组合后符合会话要求的元素将被组合成对,并传递给 JoinFunction 或 FlatJoinFunction。这个操作同样是 inner join,所以如果一个会话窗口中只含有某一个流的元素,这个窗口将不会产生输出!
在这里插入图片描述
这里我们定义了一个间隔为至少一毫秒的会话窗口。图中总共有三个会话,前两者中两个流都有元素,它们被 join 并传递给 JoinFunction。而第三个会话中,绿流没有任何元素,所以 ⑧ 和 ⑨ 没有被 join!

  • 示例代码
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.windowing.assigners.EventTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
 
...

DataStream<Integer> orangeStream = ...;
DataStream<Integer> greenStream = ...;

orangeStream.join(greenStream)
    .where(<KeySelector>)
    .equalTo(<KeySelector>)
    .window(EventTimeSessionWindows.withGap(Time.milliseconds(1)))
    .apply (new JoinFunction<Integer, Integer, String> (){
        @Override
        public String join(Integer first, Integer second) {
            return first + "," + second;
        }
    });

4、TumblingEventTimeWindows示例

本示例功能是通过系统模拟生成订单数据,然后通过订单关联商品信息,统计订单的金额。
本示例有2种实现方式,其区别就是WatermarkStrategy的实现方式不同,一个是匿名类,一个是实现接口。

1)、数据结构及bean

  • 商品类
package org.datastreamapi.operator.window.bean;

import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;

import com.alibaba.fastjson.JSON;

import lombok.Data;

/**
 * @author alanchan
 *
 */
// 商品类(商品id,商品名称,商品价格)
@Data
public class Goods {
	private String goodsId;
	private String goodsName;
	private BigDecimal goodsPrice;
	public static List<Goods> GOODSLIST;
	public static Random r;

	static {
		r = new Random();
		GOODSLIST = new ArrayList<>();
		GOODSLIST.add(new Goods("1", "iphone11", new BigDecimal(6000)));
		GOODSLIST.add(new Goods("2", "iphone12", new BigDecimal(7000)));
		GOODSLIST.add(new Goods("3", "MacBookPro", new BigDecimal(15000)));
		GOODSLIST.add(new Goods("4", "iphone13", new BigDecimal(8000)));
		GOODSLIST.add(new Goods("5", "iphone14", new BigDecimal(9000)));
		GOODSLIST.add(new Goods("6", "iphone15", new BigDecimal(10000)));
	}

	public static Goods randomGoods() {
		int rIndex = r.nextInt(GOODSLIST.size());
		return GOODSLIST.get(rIndex);
	}

	public Goods() {
	}

	public Goods(String goodsId, String goodsName, BigDecimal goodsPrice) {
		this.goodsId = goodsId;
		this.goodsName = goodsName;
		this.goodsPrice = goodsPrice;
	}

	@Override
	public String toString() {
		return JSON.toJSONString(this);
	}
}

  • 订单类
package org.datastreamapi.operator.window.bean;

import com.alibaba.fastjson.JSON;

import lombok.Data;

/**
 * @author alanchan
 *
 */
// 订单明细类(订单id,商品id,商品数量)
@Data
public class Order {
	private String itemId;
	private String goodsId;
	private Integer count;

	@Override
	public String toString() {
		return JSON.toJSONString(this);
	}
}

  • 商品和订单关联类
package org.datastreamapi.operator.window.bean;

import java.math.BigDecimal;

import com.alibaba.fastjson.JSON;

import lombok.Data;

/**
 * @author alanchan
 *
 */
// 商品类(商品id,商品名称,商品价格)
// 订单明细类(订单id,商品id,商品数量)
// 关联结果(商品id,商品名称,商品数量,商品价格*商品数量)
@Data
public class OrderItem {
	private String goodsId;
	private String goodsName;
	private BigDecimal count;
	private BigDecimal total;

	@Override
	public String toString() {
		return JSON.toJSONString(this);
	}
}

2)、定义商品和订单数据源

  • 商品数据源
package org.datastreamapi.operator.window.source;

import java.util.concurrent.TimeUnit;

import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.datastreamapi.operator.window.bean.Goods;

/**
 * @author alanchan
 *
 */
public class GoodsSource extends RichSourceFunction<Goods> {
	private Boolean isCancel;

	@Override
	public void open(Configuration parameters) throws Exception {
		isCancel = false;
	}

	@Override
	public void run(SourceContext sourceContext) throws Exception {
		while (!isCancel) {
			Goods.GOODSLIST.stream().forEach(goods -> sourceContext.collect(goods));
			TimeUnit.SECONDS.sleep(1);
		}
	}

	@Override
	public void cancel() {
		isCancel = true;
	}
}

  • 订单数据源
package org.datastreamapi.operator.window.source;

import java.util.Random;
import java.util.UUID;
import java.util.concurrent.TimeUnit;

import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.datastreamapi.operator.window.bean.Goods;
import org.datastreamapi.operator.window.bean.Order;

/**
 * @author alanchan
 *
 */
public class OrderSource extends RichSourceFunction<Order>{
	private Boolean isCancel;
	private Random r;

	@Override
	public void open(Configuration parameters) throws Exception {
		isCancel = false;
		r = new Random();
	}

	@Override
	public void run(SourceContext sourceContext) throws Exception {
		while (!isCancel) {
			Goods goods = Goods.randomGoods();
			Order order = new Order();
			order.setGoodsId(goods.getGoodsId());
			order.setCount(r.nextInt(10) + 1);
			order.setItemId(UUID.randomUUID().toString());
			sourceContext.collect(order);

			// 模拟一个订单中有多个商品
			order.setGoodsId("10");
			sourceContext.collect(order);
			TimeUnit.SECONDS.sleep(1);
		}
	}

	@Override
	public void cancel() {
		isCancel = true;
	}
}

3)、Window Join实现方式一

package org.datastreamapi.operator.window;

import java.math.BigDecimal;
import java.time.Duration;

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.datastreamapi.operator.window.bean.Goods;
import org.datastreamapi.operator.window.bean.Order;
import org.datastreamapi.operator.window.bean.OrderItem;
import org.datastreamapi.operator.window.source.GoodsSource;
import org.datastreamapi.operator.window.source.OrderSource;

/**
 * @author alanchan
 *
 */
public class TestWindowJoinDemo {

	/**
	 * @param args
	 * @throws Exception
	 */
	public static void main(String[] args) throws Exception {
		// 0.env
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

		// 1.source
		// 商品数据流
		DataStreamSource<Goods> goodsDS = env.addSource(new GoodsSource());
		// 订单数据流
		DataStreamSource<Order> orderDS = env.addSource(new OrderSource());

		// 给数据添加水印(这里直接使用系统时间作为事件时间)
		// 方式一
		SingleOutputStreamOperator<Order> orderDSWithWatermark = orderDS
				.assignTimestampsAndWatermarks(WatermarkStrategy.<Order>forBoundedOutOfOrderness(Duration.ofSeconds(3))// 指定maxOutOfOrderness最大无序度/最大允许的延迟时间/乱序时间
						.withTimestampAssigner((element, timestamp) -> System.currentTimeMillis()));

		SingleOutputStreamOperator<Goods> goodsDSWithWatermark = goodsDS.assignTimestampsAndWatermarks(WatermarkStrategy.<Goods>forBoundedOutOfOrderness(Duration.ofSeconds(3))// 指定maxOutOfOrderness最大无序度/最大允许的延迟时间/乱序时间
				.withTimestampAssigner((element, timestamp) -> System.currentTimeMillis()));

		// 2.transformation
		// 商品类(商品id,商品名称,商品价格)
		// 订单明细类(订单id,商品id,商品数量)
		// 关联结果(商品id,商品名称,商品数量,商品价格*商品数量)
		// 官方示例代码
//				orangeStream.join(greenStream)
//			    .where()
//			    .equalTo()
//			    .window(TumblingEventTimeWindows.of(Time.milliseconds(2)))
//			    .apply (new JoinFunction (){
//			        @Override
//			        public String join(Integer first, Integer second) {
//			            return first + "," + second;
//			        }
//			    });

		DataStream<OrderItem> resultDS = goodsDSWithWatermark.join(orderDSWithWatermark).where(goods -> goods.getGoodsId()).equalTo(orderItem -> orderItem.getGoodsId())
//		              .where(Goods::getGoodsId)
//		              .equalTo(Order::getGoodsId)
				.window(TumblingEventTimeWindows.of(Time.seconds(5)))
				// 
				.apply(new JoinFunction<Goods, Order, OrderItem>() {

					@Override
					public OrderItem join(Goods first, Order second) throws Exception {
						OrderItem orderItem = new OrderItem();
						orderItem.setGoodsId(first.getGoodsId());
						orderItem.setGoodsName(first.getGoodsName());
						orderItem.setCount(new BigDecimal(second.getCount()));
						orderItem.setTotal(new BigDecimal(second.getCount()).multiply(first.getGoodsPrice()));
						return orderItem;
					}
				});

		// 3.sink
		resultDS.print();

		// 4.execute
		env.execute();
	}

}

4)、WindowJoin实现方式二

  • GoodsWatermark
package org.datastreamapi.operator.window.watermark;

import org.apache.flink.api.common.eventtime.TimestampAssigner;
import org.apache.flink.api.common.eventtime.TimestampAssignerSupplier;
import org.apache.flink.api.common.eventtime.Watermark;
import org.apache.flink.api.common.eventtime.WatermarkGenerator;
import org.apache.flink.api.common.eventtime.WatermarkGeneratorSupplier;
import org.apache.flink.api.common.eventtime.WatermarkOutput;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.datastreamapi.operator.window.bean.Goods;

/**
 * @author alanchan
 * 使用系统时间构建水印分配器
 */
public class GoodsWatermark implements WatermarkStrategy<Goods> {
	@Override
	public TimestampAssigner<Goods> createTimestampAssigner(TimestampAssignerSupplier.Context context) {
		return (element, recordTimestamp) -> System.currentTimeMillis();
	}

	@Override
	public WatermarkGenerator<Goods> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
		return new WatermarkGenerator<Goods>() {
			@Override
			public void onEvent(Goods event, long eventTimestamp, WatermarkOutput output) {
				output.emitWatermark(new Watermark(System.currentTimeMillis()));
			}

			@Override
			public void onPeriodicEmit(WatermarkOutput output) {
				output.emitWatermark(new Watermark(System.currentTimeMillis()));
			}
		};
	}

}

  • OrderWatermark
package org.datastreamapi.operator.window.watermark;

import org.apache.flink.api.common.eventtime.TimestampAssigner;
import org.apache.flink.api.common.eventtime.TimestampAssignerSupplier;
import org.apache.flink.api.common.eventtime.Watermark;
import org.apache.flink.api.common.eventtime.WatermarkGenerator;
import org.apache.flink.api.common.eventtime.WatermarkGeneratorSupplier;
import org.apache.flink.api.common.eventtime.WatermarkOutput;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.datastreamapi.operator.window.bean.Order;

/**
 * @author alanchan
 * 使用系统时间构建水印分配器
 */
public class OrderWatermark implements WatermarkStrategy<Order> {
	@Override
	public TimestampAssigner<Order> createTimestampAssigner(TimestampAssignerSupplier.Context context) {
		return (element, recordTimestamp) -> System.currentTimeMillis();
	}

	@Override
	public WatermarkGenerator<Order> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
		return new WatermarkGenerator<Order>() {

			@Override
			public void onEvent(Order event, long eventTimestamp, WatermarkOutput output) {
				output.emitWatermark(new Watermark(System.currentTimeMillis()));
			}

			@Override
			public void onPeriodicEmit(WatermarkOutput output) {
				output.emitWatermark(new Watermark(System.currentTimeMillis()));
			}
		};
	}
}

  • WindowJoin实现
package org.datastreamapi.operator.window;

import java.math.BigDecimal;

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.datastreamapi.operator.window.bean.Goods;
import org.datastreamapi.operator.window.bean.Order;
import org.datastreamapi.operator.window.bean.OrderItem;
import org.datastreamapi.operator.window.source.GoodsSource;
import org.datastreamapi.operator.window.source.OrderSource;
import org.datastreamapi.operator.window.watermark.GoodsWatermark;
import org.datastreamapi.operator.window.watermark.OrderWatermark;

/**
 * @author alanchan
 *
 */
public class TestWindowJoinDemo {

	/**
	 * @param args
	 * @throws Exception
	 */
	public static void main(String[] args) throws Exception {
		// 0.env
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

		// 1.source
		// 商品数据流
		DataStreamSource<Goods> goodsDS = env.addSource(new GoodsSource());
		// 订单数据流
		DataStreamSource<Order> orderDS = env.addSource(new OrderSource());

		// 给数据添加水印(这里直接使用系统时间作为事件时间)
		// 方式二
		SingleOutputStreamOperator<Goods> goodsDSWithWatermark = goodsDS.assignTimestampsAndWatermarks(new GoodsWatermark());
		SingleOutputStreamOperator<Order> orderDSWithWatermark = orderDS.assignTimestampsAndWatermarks(new OrderWatermark());

		// 2.transformation
		// 商品类(商品id,商品名称,商品价格)
		// 订单明细类(订单id,商品id,商品数量)
		// 关联结果(商品id,商品名称,商品数量,商品价格*商品数量)
		// 官方示例代码
//				orangeStream.join(greenStream)
//			    .where()
//			    .equalTo()
//			    .window(TumblingEventTimeWindows.of(Time.milliseconds(2)))
//			    .apply (new JoinFunction (){
//			        @Override
//			        public String join(Integer first, Integer second) {
//			            return first + "," + second;
//			        }
//			    });

		DataStream<OrderItem> resultDS = goodsDSWithWatermark.join(orderDSWithWatermark).where(goods -> goods.getGoodsId()).equalTo(orderItem -> orderItem.getGoodsId())
//		              .where(Goods::getGoodsId)
//		              .equalTo(Order::getGoodsId)
				.window(TumblingEventTimeWindows.of(Time.seconds(5)))
				// 
				.apply(new JoinFunction<Goods, Order, OrderItem>() {

					@Override
					public OrderItem join(Goods first, Order second) throws Exception {
						OrderItem orderItem = new OrderItem();
						orderItem.setGoodsId(first.getGoodsId());
						orderItem.setGoodsName(first.getGoodsName());
						orderItem.setCount(new BigDecimal(second.getCount()));
						orderItem.setTotal(new BigDecimal(second.getCount()).multiply(first.getGoodsPrice()));
						return orderItem;
					}
				});

		// 3.sink
		resultDS.print();

		// 4.execute
		env.execute();
	}

}

5)、运行结果

WindowJoin实现方式有2种,但运行结果类似,因为数据都是随机产生的,下述结果供参考。

7> {"count":2,"goodsId":"1","goodsName":"iphone11","total":12000}
7> {"count":7,"goodsId":"1","goodsName":"iphone11","total":42000}
1> {"count":9,"goodsId":"4","goodsName":"iphone13","total":72000}
5> {"count":10,"goodsId":"3","goodsName":"MacBookPro","total":150000}
1> {"count":9,"goodsId":"4","goodsName":"iphone13","total":72000}
7> {"count":9,"goodsId":"1","goodsName":"iphone11","total":54000}
1> {"count":9,"goodsId":"4","goodsName":"iphone13","total":72000}
5> {"count":8,"goodsId":"3","goodsName":"MacBookPro","total":120000}
7> {"count":7,"goodsId":"1","goodsName":"iphone11","total":42000}
5> {"count":10,"goodsId":"3","goodsName":"MacBookPro","total":150000}
1> {"count":9,"goodsId":"4","goodsName":"iphone13","total":72000}
5> {"count":8,"goodsId":"3","goodsName":"MacBookPro","total":120000}
7> {"count":9,"goodsId":"1","goodsName":"iphone11","total":54000}
5> {"count":10,"goodsId":"3","goodsName":"MacBookPro","total":150000}
1> {"count":9,"goodsId":"4","goodsName":"iphone13","total":72000}
7> {"count":7,"goodsId":"1","goodsName":"iphone11","total":42000}
5> {"count":8,"goodsId":"3","goodsName":"MacBookPro","total":120000}
7> {"count":9,"goodsId":"1","goodsName":"iphone11","total":54000}

以上,本文主要介绍Flink 的常用的operator window join 及详细示例。
如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本专题分为四篇文章介绍,即
【flink番外篇】2、flink的23种算子window join 和interval join 数据倾斜、分区介绍及详细示例(1)- window join
【flink番外篇】2、flink的23种算子window join 和interval join 数据倾斜、分区介绍及详细示例(2)- interval join
【flink番外篇】2、flink的23种算子window join 和interval join 数据倾斜、分区介绍及详细示例(3)- 数据倾斜处理、分区示例
【flink番外篇】2、flink的23种算子window join 和interval join 数据倾斜、分区介绍及详细示例-完整版

你可能感兴趣的:(flink,示例专栏,flink,flink,hive,flink,kafka,大数据,flink,数据倾斜,flink,window,flink,流批一体)