之前已经介绍的变量分析:
①相关分析:一个连续变量与一个连续变量间的关系。
②双样本t检验:一个二分分类变量与一个连续变量间的关系。
本次介绍:
方差分析:一个多分类分类变量与一个连续变量间的关系。
其中分类个数大于两个,分类变量也可以有多个。
当分类变量为多个时,对分类个数不做要求,即可以为二分分类变量。
一、数理统计技术
数理统计分为频率和贝叶斯两大学派。
描述性统计分析,描述性分析就是从总体数据中提炼变量的主要信息,即统计量。
描述性分析的难点在于对业务的了解和对数据的寻找。
统计推断和统计建模,建立解释变量与被解释变量之间可解释的、稳定的、最好是具有因果关系的表达式。
在模型运用时,将解释变量(自变量)带入表达式中,用于预测被解释变量(因变量)的值。
现阶段,我学习的就是统计推断与建模的知识...
二、方差分析
方差分析用于检验多个样本的均值是否有显著差异。
探索多于两个分类的分类变量与连续变量的关系。
比如说「浅谈数据分析岗」中薪水与教育程度之间的关系,教育程度为一个多分类的分类变量。
01 单因素方差分析
单因素方差分析的前提条件:
①变量服从正态分布(薪水符合)。
②观测之间独立(教育程度符合)。
③需验证组间的方差是否相同,即方差齐性检验。
组间误差与组内误差、组间变异与组内变异、组间均方与组内均方都是方差分析中的衡量标准。
如果组间均方明显大于组内均方,则说明教育程度对薪水的影响显著。
那么需要大多少才能确定结论呢?
这里组间均方与组内均方的比值是服从F分布,下面贴出F分布