- 华为OD机试E卷 --响应报文时间 --24年OD统一考试(Java & JS & Python & C & C++)
飞码创造者
最新华为OD机试题库2024华为odjavajavascriptc++c语言python
文章目录题目描述输入描述输出描述用例题目解析JS算法源码Java算法源码python算法源码c算法源码c++算法源码题目描述IGMP协议中,有一个字段称作最大响应时间(MaxResponseTime),HOST收到查询报文,解折出MaxResponsetime字段后,需要在(0,MaXxResponseTime]时间(s)内选取随机时间回应一个响应报文,如果在随机时间内收到一个新的查询报文,则会根
- 大模型中的分词技术 BBPE
禅与计算机技术
深度学习大模型NLP深度学习nlp中文分词机器学习
一、OOV问题和多语言场景在自然语言处理(NLP)中,OOV(Out-of-Vocabulary)问题是指模型在处理文本时遇到未在词表中出现过的词汇,导致无法有效处理这些词汇的情况。这一问题在多语言场景中尤为突出,因为不同语言在词汇、语法结构和表达方式上存在显著差异,单一语言的词表难以全面覆盖多语言的复杂性。在多语言场景下的NLP任务中(如机器翻译、跨语言文本分类等),模型需要处理多种语言的混合文
- Command Center AI
由数入道
应急管理人工智能机器学习智能体
CommandCenterAI是一种先进的智能决策支持系统,专门用于应急指挥和资源调度管理,尤其在高压、复杂的环境中,如自然灾害应对、军事指挥、城市公共安全等领域,帮助决策者做出快速、有效的响应。它集成了大数据处理、实时情报分析、优化调度、决策模拟等功能,为指挥官提供多维度的决策支持。1.CommandCenterAI的核心功能1.1实时数据整合与情报分析CommandCenterAI需要从多个数
- 分形、大自然的分形几何、数据可视化、Python绘图
timedot-hj
python绘图指南-分形与数据可视化可视化python几何学算法
分形、大自然的分形几何、数据可视化、Python绘图中国传统中的『分形』大自然的分形几何数据可视化本系列采用turtle、matplotlib、numpy这三个Python工具,以分形与计算机图像处理的经典算法为实例,通过程序和图像,来帮助读者一步步掌握Python绘图和数据可视化的方法和技巧,并且让读者感受到“龙枝屈曲竞分形,瑰丽绮错千万状”的分形魅力。本系列共有八章,分别为海岸线有多长,基因与
- 【自然语言处理(NLP)】jieba分词的使用(分词模式、关键词提取)
道友老李
自然语言处理(NLP)自然语言处理人工智能
文章目录介绍jieba分词的使用1.安装2.jieba分词模式2.1精确模式2.2全模式2.3搜索引擎模式2.4词性标注2.5加载自己的分词文件3.查看词频4.关键词提取个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍**自然语言处理(NaturalLanguageProcessing,NLP)**是计算机科学领域与人工智能领域中的一个重要方向。它研究的是人类(自然)语言与计算机之间的交互。
- 改进候鸟优化算法之二:基于混沌映射的候鸟优化算法(MBO-CM)
搏博
算法人工智能r语言开发语言算法策略模式
基于混沌映射的候鸟优化算法(MigratingBirdsOptimizationbasedonChaoticMapping,MBO-CM)是一种结合了混沌映射与候鸟优化算法(MigratingBirdsOptimization,MBO)的优化方法。一、候鸟优化算法(MBO)简介候鸟优化算法是一种自然启发的元启发式算法,由Duman等人于2011年(也有说法为2012年)提出。该算法模拟候鸟在迁徙过
- python机器学习
方安乐
pythonpython机器学习人工智能
Python机器学习是当前最为热门的机器学习领域之一,其简洁、易用、高效的特点,让越来越多的开发者开始探索其应用。本文将从以下几个方面介绍Python机器学习的基础知识和实践案例,帮助读者更好地理解和应用机器学习技术。前提Python机器学习的应用领域A.图像识别和计算机视觉B.自然语言处理和文本分析C.数据挖掘和推荐系统深度学习A.神经网络的基本原理B.常用的深度学习框架和算法C.深度学习在图像
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 基于深度学习的舆论分析与检测系统应用与研究
计算机软件程序设计
机器学习深度学习人工智能舆论检测
【1】系统介绍研究背景随着互联网技术的迅猛发展和社会媒体平台的普及,信息传播的速度和范围达到了前所未有的水平。这一变化不仅极大地丰富了人们的社交生活,也为社会科学研究提供了新的视角和工具。舆论分析作为社会科学研究的一个重要分支,其目的是通过收集和分析网络上的公众意见和情感倾向,来了解人们对特定事件或话题的看法和态度。近年来,基于深度学习的自然语言处理技术取得了显著进步,这为提高舆论分析的准确性和效
- 自然语言处理(NLP)-总览图学习
汤姆和佩琦
NLP自然语言处理学习人工智能
文章目录自然语言处理(NLP)-总览图学习1.一张总览图的学习1.语音学(Phonology)2.形态学(Morphology)3.句法学(Syntax)4.语义学(Semantics)5.推理(Reasoning)小结自然语言处理(NLP)-总览图学习转自《Python自然语言处理第二版》1.一张总览图的学习这张图片展示了一个自然语言处理的流程模型,涵盖了从语音分析到应用推理和执行的多个阶段,每
- 读论文 Situated Instruction Following
MhZhou0412
人工智能深度学习python
研究背景:在传统的指令跟随范式中,代理独自在一个空房子里行动,导致语言使用既简单又人为“完整”。与此相反,我们提出了情境指令跟随(SIF),该方法拥抱真实世界通信中固有的不完全和模糊性,具有人的物理存在。情境指令的意义通过人类的过去行动和预期未来行为自然展开。在我们的设置中,指令具有以下特征:(1)模糊不清,(2)具有时间演变的意图,(3)可以通过代理的动态行动更精确地解释。SIF中的任务包括两个
- 基于Python的自然语言处理系列(2):Word2Vec(负采样)
会飞的Anthony
自然语言处理人工智能信息系统自然语言处理word2vec人工智能
在本系列的第二篇文章中,我们将继续探讨Word2Vec模型,这次重点介绍负采样(NegativeSampling)技术。负采样是一种优化Skip-gram模型训练效率的技术,它能在大规模语料库中显著减少计算复杂度。接下来,我们将通过详细的代码实现和理论讲解,帮助你理解负采样的工作原理及其在Word2Vec中的应用。1.Word2Vec(负采样)原理1.1负采样的背景在Word2Vec的Skip-g
- GPT-4、GPT-4O 和 GPT-4O-mini 的区别与联系
surfirst
LLMai语言模型chatgpt
简介近年来,人工智能技术飞速发展,特别是在自然语言处理领域。GPT-4是OpenAI推出的新一代大模型,而GPT-4O和GPT-4O-mini是其优化版本,专门为不同应用场景和计算资源需求进行调整。在这篇文章中,我们将详细比较GPT-4、GPT-4O和GPT-4O-mini的区别与联系,帮助开发者更好地选择适合的模型。GPT-4是OpenAI发布的第四代通用预训练模型,具备强大的生成和理解能力,适
- 30个整数映射到1个字节,查表法实现小范围内常数时间素性判定
磁悬浮青蛙呱呱呱
数据结构C#MATLAB素性测试位图
想用查表法实现小范围内的常数时间的素性判定,怎样节省存储空间呢?自然是1个bit代表1个整数的素性,同时,偶数不用存,个位为5的整数不用存,只有个位为1、3、7、9的整数才可能是素数,也就是每20个整数中只有8个数可能是素数,正好1个字节。但本文的标题是30个整数映射到1个字节,说明上面的方法还有优化的潜力。让我们来考虑31~60这30个整数中最多有几个数可能是素数,所有偶数以及个位是5的数都是合
- 华为OD机试2024年E卷-分苹果[100分]( Java | Python3 | C++ | C语言 | JsNode | Go )实现100%通过率
梅花C
华为OD题库华为od
题目描述A、B两个人把苹果分为两堆,A希望按照他的计算规则等分苹果Q,他的计算规则是按照二进制加法计算,并且不计算进位12+5=9(1100+0101=9),B的计算规则是十进制加法,包括正常进位,B希望在满足A的情况下获取苹果重量最多。输入苹果的数量和每个苹果重量,输出满足A的情况下B获取的苹果总重量。如果无法满足A的要求,输出-1。数据范围1<=总苹果数量<=200001<=每个苹果重量<=1
- 计算机视觉:卷积核
每天五分钟玩转人工智能
计算机视觉计算机视觉深度学习人工智能机器学习卷积神经网络
本文重点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。在卷积神经网络中,卷积核是网络的核心组件之一。通过不断堆叠卷积层和池化层,可以逐渐提取出更高级别的特征,从而实现更复杂的任务。卷积神经网络中的卷积核可以通过反向传播算法进行训练和优化,使其能够自适应地学习输入数据中的特征。因此,卷积神经网络在图像
- 华为OD机试E卷 --连续字母长度--24年OD统一考试(Java & JS & Python & C & C++)
飞码创造者
最新华为OD机试题库2024javapython华为odjavascriptc语言
文章目录题目描述输入描述输出描述用例题目解析JS算法源码Java算法源码python算法源码c算法源码c++算法源码题目描述给定一个字符串,只包含大写字母,求在包含同一字母的子串中,长度第k长的子串的长度,相同字母只取最长的那个子串。输入描述第一行有一个子串(1<长度<=100),只包含大写字母。第二行为k的值输出描述输出连续出现次数第k多的字母的次数。用例输入AAAAHHHBBCDHHHH3输出
- Agent实战系列:快速自定义Agent在业务线落地:从入门到高级[实现tool串联、多轮对话、多Agent动态编排、静态编排等]
汀、人工智能
AIAgentLLM工业级落地实践人工智能AIAgent多智能体协作知识问答智能问答RAGAI编排流
Agent实战系列:快速自定义Agent在业务线落地:从入门到高级[实现tool串联、多轮对话、多Agent动态编排、静态编排等]本系列涵盖了多个关键功能的实现,包括tool串联、多轮对话、多Agent动态编排以及静态编排等。通过这些功能的学习与实践,用户将能够构建出功能丰富、灵活多变的Agent系统。tool串联让Agent能够调用多种工具和服务,多轮对话则让Agent能够与用户进行更加自然和深
- 使用 Docker Compose 一键启动 Redis、MySQL 和 RabbitMQ
前端 贾公子
dockerredismysql
目录一、DockerCompose简介二、服务配置详解1.Redis配置2.MySQL配置3.RabbitMQ配置三、数据持久化与时间同步四、部署与管理五、总结目录挂载与卷映射的区别现代软件开发中,微服务架构因其灵活性和可扩展性而备受青睐。为了支持微服务的高效运行,我们需要构建一个强大且可靠的基础设施。本文将介绍如何使用DockerCompose部署Redis、MySQL和RabbitMQ,这些组
- DigitalOcean Kubernetes现已支持VPC natvie集群
DO_Community
kubernetes
DigitalOceanKubernetes(DOKS)的VPCnatvie集群功能现已正式上线!这一新功能实现了DOKS集群与虚拟私有云(VPC)资源之间的无缝集成,提升了工作负载的网络灵活性和可扩展性。什么是VPCnatvie集群?VPCnatvie集群支持Kubernetes集群与VPC资源之间进行原生路由。这意味着你的DOKS集群可以作为现有VPC网络架构的自然扩展,提供更流畅的连接和更好
- Rasa的工作流程
不会编程的程序猿ᅟ
rasa
Rasa的工作流程分为两个主要部分:NLU(自然语言理解)和Core(对话管理)。整个流程包括从用户输入到最终响应的多个步骤,下面是详细的工作流程解析:1.用户输入用户通过聊天界面(如微信、Telegram、Slack或Web前端)发送自然语言消息,例如:"我想预订一张明天去北京的火车票"2.自然语言理解(NLU)Rasa的NLU模块解析用户输入,提取意图和实体。2.1意图识别NLU模块会识别用户
- 国内的AI大模型有可能超过ChatGPT吗?
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能深度学习AI写作AIGC
这是一个非常有前瞻性和现实意义的问题。要回答国内AI是否有可能超过ChatGPT,我们需要从多个方面来分析,包括技术基础、数据资源、应用场景、政策支持以及人才储备等。以下是对这一问题的详细探讨:1.技术基础(1)现状国内AI技术:国内的AI技术发展迅速,尤其在深度学习、自然语言处理(NLP)和计算机视觉等领域已经取得了显著进展。例如,百度的文心一言、阿里的通义千问等大语言模型(LLM)已经在技术上
- 华为OD机试E卷 --分苹果 --24年OD统一考试(Java & JS & Python & C & C++)
飞码创造者
最新华为OD机试题库2024华为odjavajavascriptpythonjsc语言
文章目录题目描述输入描述输出描述用例题目解析JS算法源码Java算法源码python算法源码c算法源码c++算法源码题目描述A、B两个人把苹果分为两堆,A希望按照他的计算规则等分苹果,他的计算规则是按照二进制加法计算,并且不计算进位12+5=9(1100+0101=9),B的计算规则是十进制加法,包括正常进位,B希望在满足A的情况下获取苹果重量最多。输入苹果的数量和每个苹果重量,输出满足A的情况下
- 【Lora微调】提高模型效率的创新方法
@fishv
人工智能大模型微调Lora
前言在自然语言处理(NLP)和机器学习的研究和应用中,随着模型规模的不断扩大,模型训练的计算成本和存储需求也不断攀升。大型预训练模型,如GPT、BERT等,虽然在许多任务上表现出色,但它们的训练和微调通常需要巨大的计算资源,这使得许多研究者和开发者无法充分利用这些模型进行个性化或领域特定的调整。为了在保持模型性能的同时减少计算开销,**Lora(Low-RankAdaptation)**应运而生。
- 再分享API形式调用Dify项目应用
福安德信息科技
大模型python人工智能大模型llmdify
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。RAGOnMedicalKG:大模型结合知识图谱的RAG实现DSPy:变革式大模型应用开发最简明的Few-shotPrompt指南SemanticKernel:微软大模型开发框架——LangChain替代对话大模型Prompt是否需要
- 基于深度学习的鸟类识别系统详解(UI界面 + YOLOv10 + 数据集)
2025年数学建模美赛
深度学习uiYOLO人工智能python计算机视觉
引言鸟类识别是计算机视觉领域中一个独具挑战性的任务,尤其是在复杂的自然环境中,识别不同种类的鸟类需要非常强大的模型和丰富的数据集。随着深度学习技术的发展,基于YOLO(YouOnlyLookOnce)系列模型的目标检测系统展现了卓越的性能,特别是在速度和精度上的平衡方面。本博客将详细讲解如何利用YOLOv10模型来构建一个基于深度学习的鸟类识别系统。该系统会结合自定义鸟类数据集,设计一个简洁直观的
- Java 大视界 -- Java 大数据中的自然语言生成技术与实践(63)
青云交
大数据新视界Java大视界大数据自然语言生成基于规则模型基于统计模型基于深度学习模型新闻写作智能客服
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 你知道吗?其实这些都是AI——智能聊天机器人
贫苦游商
人工智能机器人机器学习AIGC制造
智能聊天机器人AI:优化用户体验的智能助手在现代的数字化生活中,智能聊天机器人已经成为许多中国社交平台上不可或缺的一部分。这些机器人通过人工智能技术的支持,为用户提供各种互动服务,从回答常见问题到提供个性化建议,极大地提升了用户体验和平台的服务质量。智能聊天机器人AI的核心在于其强大的自然语言处理能力。通过分析用户的输入文本,这些系统能够理解用户的意图,并生成相应的回复。例如,当用户在购物平台上询
- Linux扩容根分区
一位不愿透露昵称的网民
linux运维
Linux扩容根分区(LVM逻辑分区模式),其他分区类似操作前提:保证系统分区是逻辑卷分区(LVM),非标准模式分区查看系统分区情况fdisk-l,磁盘/dev/sdb是新增加且未使用的分区[root@vm1~]#fdisk-l磁盘/dev/sdb:21.5GB,21474836480字节,41943040个扇区Units=扇区of1*512=512bytes扇区大小(逻辑/物理):512字节/5
- 华为OD机试E卷 --货币单位换算--24年OD统一考试(Java & JS & Python & C & C++)
飞码创造者
最新华为OD机试题库2024华为odjavajavascriptpythonjsc语言
文章目录题目描述输入描述输出描述用例题目解析JS算法源码Java算法源码python算法源码c算法源码c++算法源码题目描述记账本上记录了若干条多国货币金额,需要转换成人民币分(fen),汇总后输出。每行记录一条金额,金额带有货币单位,格式为数字+单位,可能是单独元,或者单独分,或者元与分的组合。要求将这些货币全部换算成人民币分(fen)后进行汇总,汇总结果仅保留整数,小数部分舍弃。元和分的换算关
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR