一、前言
android中,为了保证线程安全的更新UI,且不影响UI更新的性能,没有采取加锁方式更新UI,而是使用单线程更新。所以在android中,只有子线程才能更新UI。为了达到切换线程执行更新UI功能,需要使用Handler机制来完成。另一方面,android可以被理解为是基于事件驱动的,即根据事件的刺激,而做出相应的反应。在Activity的生命周期切换时,便需要Handler机制的参与。
Handler消息机制,是生产者消费者模式的一类。由Handler发送Message,特定的情况下再去消费该Message的非阻塞的模式。至于为什么是非阻塞方式,android只能由主线程更新UI,为了不让用户感觉卡顿现象,只能由将耗时功能放在子线程中,执行完成时再切换至主线程。如果Handler切换的时候,阻塞了线程,便会影响到了用户的体验。
二、线程切换
简而言之,Handler的线程切换,并不是特别的神秘。他只是由一个线程向另一个线程插入一条Runnable,再由该线程去执行。
public class Handler extends Thread {
public Handler() {
super("Handler");
}
private volatile boolean isStop = false;
private List messages = new ArrayList<>();
// 插入一条消息
public synchronized void insertMessage(Runnable message) {
messages.add(message);
}
@Override
public void run() {
while (!isStop) {
Runnable message = null;
// 1、消息队列中拿到消息
synchronized (messages) {
if (messages.size() > 0) {
message = messages.remove(0);
}
}
if (message != null) {
// 2、执行消息
message.run();
}
}
}
public void stopThread() {
isStop = true;
}
public static void main(String[] args) throws InterruptedException {
System.out.println(Thread.currentThread());
Runnable message = new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread());
}
};
Handler handler = new Handler();
handler.start();
handler.insertMessage(message);
}
}
上面代码,虽然简单,却将线程切换的核心知识点写出来了。即通过共享变量的方式,让另一个线程感知执行对象的存在。再配上一定的规则,Handler是按照时间顺序推迟执行。
虽然实现了线程的切换,但是这样简单的Handler会存在很多问题。
问题:
- 消息使用Runnable是否满足需要?
- 消息队列用什么数据结构存在比较合理?
- 采用线程死循环的方式,极度的浪费CPU资源,是否有其他合理的方式?
- 每新建个Handler对象,都会产生一个线程,能不能利用消息队列的遍历模块?
带着以上的问题,再来Android中的Handler机制会更加的清除点,
三、Handler消息机制
如上图可知,Handler的消息机制可分为,消息存储模块、消息的消费模块。以及消息的封装,毕竟java是面向对象的方式,需要将请求参数封装成Message对象。
1) Handler类
* A Handler allows you to send and process {@link Message} and Runnable
* objects associated with a thread's {@link MessageQueue}. Each Handler
* instance is associated with a single thread and that thread's message
* queue. When you create a new Handler, it is bound to the thread /
* message queue of the thread that is creating it -- from that point on,
* it will deliver messages and runnables to that message queue and execute
* them as they come out of the message queue.
*
简而言之:
Handler是一个关联一个消息队列,发送或处理Runnable对象,每个Handler都关联一个单个的线程和消息队列,当你创建一个新的Handler的时候它就将绑定到一个线程或线程上的消息队列,这个Handler就将为这个消息队列提供消息或Runnable对象,处理消息队列释放出来的消息或Runnable对象。
对于用户来说,你只需要了解Handler这个类就行了,并不要了解MessageQueue等类,这极大地简化了用户的使用难度。思考下,我们在将模块或者组件设计的之时,能不能让用户了解的很少,就能使用了?
从文档上,可以得到以下的结论。
- Handler是发送或者处理Runnable的类的。
- 每个Handler在创建的时候他就绑定到了某一个Thread中。
下面提取两个Handler构造方法:
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
public Handler(Looper looper, Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
从构造方法中可见,在初始化的时候就会绑定一个Looper,如果Handler没有关联一个Looper就会抛出异常。Callback对象,是执行该Message时候的回调方法。这样就可以通知在另一个线程中执行该Message了。
Handler关联Looper有两种方式
- 1、初始化的时候就传入一个可用的looper
- 2、采用looper.prepare()方法,这样当前线程就可以绑定一个Looper对象。然后再构造方法中会调用Looper.myLooper(),这样handler中就保存一份Looper。其中的sThreadLocal可以简单的理解为以Thread为key,以Looper为value的Map集合。
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
2) Looper类
* Class used to run a message loop for a thread. Threads by default do
* not have a message loop associated with them; to create one, call
* {@link #prepare} in the thread that is to run the loop, and then
* {@link #loop} to have it process messages until the loop is stopped.
Looper是用于为线程运行消息循环的类,默认情况下,线程不会和Looper进行关联,需要使用looper.prepare()方法后,才是关联。之后再调用looper.loop()方法,这样就可以处理消息了,直到loop被停止。
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
Looper的构造方法中可以看出,和Looper相关联的是MessageQueue和当前的Thread对象。
由于Handler中持有Looper对象,自然可以拿到MessageQueue对象。MessageQueue中是存储Message的集合,下面会具体说。因为所有的请求都会封装成Message对象,所以MessageQueue只需要存储Message一种类型即可。
从源码可见,Looper最主要的方法是looper.loop(),这样就可以开始让Looper类工作了。
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
// 拿到当前线程的looper
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
// 通过Looper拿到Queue队列
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// 死循环中读取数据,直到拿到一个有效的Message为止
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
final long traceTag = me.mTraceTag;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
final long end;
try {
// 这句话很重要,它是Message执行的触发动作
// 通过message中的Handler,来执行dispatchMessage()
msg.target.dispatchMessage(msg);
end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (slowDispatchThresholdMs > 0) {
final long time = end - start;
if (time > slowDispatchThresholdMs) {
Slog.w(TAG, "Dispatch took " + time + "ms on "
+ Thread.currentThread().getName() + ", h=" +
msg.target + " cb=" + msg.callback + " msg=" + msg.what);
}
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
上述代码可见,从消息队列中读取到了Message之后,通过Handler中的msg.target.dispatchMessage(msg);来处理Message。
消息的处理策略:
- 1、第一步如果传入的参数是Runnable(对应代码中的msg.callback),直接调用Runnable中的run方法,然后结束
- 2、如果无Runnable,那么得看Handler中是否传入了Callback接口对象。如果有mCallback,调用handleMessage(msg)方法,这会返回一个Boolean值。如果true就结束。
- 3、如果mCallback为null或者handleMessage(msg)返回为false,那就会走到handleMessage(Message msg)方法,子Handler中只需要重写handleMessage方法即可。
/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
public interface Callback {
public boolean handleMessage(Message msg);
}
private static void handleCallback(Message message) {
message.callback.run();
}
/**
* Subclasses must implement this to receive messages.
*/
public void handleMessage(Message msg) {
}
Looper类的作用:
- 存储MessageQueue和当前线程
- 轮询消息队列,找到可以执行的消息,再执行即可
3) MessageQueue类
* Low-level class holding the list of messages to be dispatched by a
* {@link Looper}. Messages are not added directly to a MessageQueue,
* but rather through {@link Handler} objects associated with the Looper.
*
* You can retrieve the MessageQueue for the current thread with
* {@link Looper#myQueue() Looper.myQueue()}.
MessageQueue类是存储多个Message的集合,被Looper类分发处理。我们只能通过Handler类来增加消息,而不能直接的操作MessageQueue,通过looper.myQueue()可以获得当前的线程的MessageQueue。
MessageQueue类只需要关于两点
1、存储机制
2、被轮询Message机制
①、插入消息
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
// 插入
return queue.enqueueMessage(msg, uptimeMillis);
}
无论是调用sendMessageXXX方法,最终都会用到sendMessageAtTime(Message msg, long uptimeMillis)该方法。插入一个消息需要三个要素,即消息队列Queue、Message和等待执行的时间uptimeMillis。
在enqueueMessage方法中,有行比较重要的代码:msg.target = this;在msg中持有当前Handler对象的引用。 这样Message就和Handler一一对应了,当找到可以执行的Message之后,就能通过handler.dispatchMessage(Message msg)来调度Message了。
前面都是在做准备工作,真正的插入是在MessageQueue中enqueueMessage(msg, uptimeMillis);实现的。Message类本质就是一个以时间为顺序的链表。他通过执行的时间判断,将新的Message插入到哪个地方。
插入的位置可以通过两方面来看,一是队首,二是非队首位置。
通过用链表的方式存储有什么好处
这是由业务决定的,因为所有的消息只会发送一次,没有重发功能,所有的Message都会按照时间的顺序执行。按照链表存储,如果不把第一个链首执行完成,就不可能去执行下一个。这样我们只需要查看链首的消息即可。如果按照Map或者其他的数据结构,就需要遍历整个集合,会非常耗费CPU资源。
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
synchronized (this) {
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
// 如果没有消息队首
// 或者自己的时间等于0
// 或者执行的时间比队首的时间还要早
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
}
return true;
}
②、轮询MessageQueue
轮询功能的触发事件是调用looper.loop()。在loop方法中有个Message msg = queue.next(); // might block 这是真正的从消息队列中遍历。为此,先看看queue.next().
简单的看,next方法就是个死循环,不断的在遍历MessageQueue。
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
// IdlerHandler的数量
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
// 链表中的第一个Message
Message msg = mMessages;
// 判断首消息是否是个栅栏消息,
// barrier消息是一个没有handler引用,阻塞同步的消息,对异步的消息开放
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
// 判断该Mesage是否到了被执行的时间。
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
// 记录下一次的执行时间
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
// 得到一个执行的Message,并且重新构建MessageQueue
if (prevMsg != null) {
// 中间的Message,让前面的节点指向后面的节点
prevMsg.next = msg.next;
} else {
// 首节点,则直接让下一个Message成为首节点
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
// 标记为正在使用
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
// 关闭消息队列,返回null,通知Looper停止循环
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
// 处理IdleHandler
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
// 重置nextPollTimeoutMillis,可以再次的执行for循环
nextPollTimeoutMillis = 0;
}
}
对于next()方法,取出一个可执行的Message,再重新的构建MessageQueue结构,这样就完成了该类的主要任务。
4) Message类
Message类,即Android消息机制处理的对象。它里面封装了所有程序运行的变量。下面就一一介绍主要的变量参数:
- what :消息的标志,即消息的ID
- arg1、arg2:消息携带的参数
- obj : 用于跨进程时,传递的Object对象
- replyTo :用于跨进程的Messager
- next : 用于构建链表
- target : Handler,用于处理该消息的Handler
- when :执行该消息的绝对时间
- callback : Runnable,将Handler传递的Runnable,封装成此Message
- sPool :消息池链表的头部
基本的常量,就在上图所示。对于Message对象,可以通过构造方法实现,但推荐通过Message.obtain()或者Handler.obtainMessage(),这样是从一个可回收的对象池中获取Message对象。
对于Message有些值得研究的,如:
- Message的存储结构,是链表存储方式
- Message的消息池原理
(一)、消息池机制
对于消息池,它的完成的就是废物利用,节省内存开销。
①、obtain()
Message中obtain()有很多重载方法,先看下最基本的无参方法。
public static Message obtain() {
synchronized (sPoolSync) {
// 消息池还有值
if (sPool != null) {
// 去除链表首部,并成为要使用的Message
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
// 消息池大小减一
sPoolSize--;
return m;
}
}
return new Message();
}
从源码中,我们大体可以了解到,该方法就是从消息池中拿出一个Message使用。这个方法是个消费者,整体是个生成者和消费者模型,那么生成者在哪了?
②、recycleUnchecked()
既然是废物利用,那么就在Message使用完成的时候,才能回收重新使用。而消息的回收则在recycleUnchecked()方法中。
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
// 还原Message
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
// 将该回收的Message放在消息池的队首
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
从源码中,该方法就做了两件事情。
- 1、还原该Message的参数
- 2、将该Message插入到消息池链表队首
由于可能会多线程的操作sPool,需要对sPool读或者写加锁,即增加了sPoolSync对象锁。
5) HandlerThread 类
通常Handler会跟Handler联系在一起比较。简单的说HandlerThread是一个继承了Thread,含有Looper成员变量的线程。
下面就来看下HandlerThread源码,就可以知道该类的功能了。
public class HandlerThread extends Thread {
int mPriority;
int mTid = -1;
Looper mLooper;
private @Nullable Handler mHandler;
public HandlerThread(String name) {
super(name);
mPriority = Process.THREAD_PRIORITY_DEFAULT;
}
public HandlerThread(String name, int priority) {
super(name);
mPriority = priority;
}
/**
* Call back method that can be explicitly overridden if needed to execute some
* setup before Looper loops.
*/
protected void onLooperPrepared() {
}
@Override
public void run() {
mTid = Process.myTid();
// 1、线程执行的时候,调用 Looper.prepare();让looper和此线程绑定
Looper.prepare();
synchronized (this) {
// 在获取looper的方法中是阻塞的,构建好looper对象后notifyAll通知过去,解除阻塞
mLooper = Looper.myLooper();
notifyAll();
}
Process.setThreadPriority(mPriority);
// 2、完成Looper准备的回调
onLooperPrepared();
// 开启loop方法轮序消息队列
Looper.loop();
mTid = -1;
}
/**
* This method returns the Looper associated with this thread. If this thread not been started
* or for any reason isAlive() returns false, this method will return null. If this thread
* has been started, this method will block until the looper has been initialized.
* @return The looper.
*/
public Looper getLooper() {
if (!isAlive()) {
return null;
}
// If the thread has been started, wait until the looper has been created.
synchronized (this) {
while (isAlive() && mLooper == null) {
try {
wait();
} catch (InterruptedException e) {
}
}
}
return mLooper;
}
/**
* @return a shared {@link Handler} associated with this thread
* @hide
*/
@NonNull
public Handler getThreadHandler() {
if (mHandler == null) {
mHandler = new Handler(getLooper());
}
return mHandler;
}
/**
立即停止Looper
*/
public boolean quit() {
Looper looper = getLooper();
if (looper != null) {
looper.quit();
return true;
}
return false;
}
/**
安全的停止Looper
*/
public boolean quitSafely() {
Looper looper = getLooper();
if (looper != null) {
looper.quitSafely();
return true;
}
return false;
}
/**
* Returns the identifier of this thread. See Process.myTid().
*/
public int getThreadId() {
return mTid;
}
}
总的来说,代码比较简单,值得注意的是getLooper()中,如果looper还没初始化好,就wait()阻塞起来。当run方法初始化完成后,在调用notifyAll()解除阻塞。
HandlerThread使用步骤:
- 创建对象 HandlerThread handlerThread=new HandlerThread("HandlerThread")
- 开启线程 handlerThread.start()
- 获取Looper, Looper looper=handlerThread.getLooper();
- 构建该线程Handler,Handler handler=new Handler(looper);
- 执行自己的操作
- quit()或quitSafely(),结束Looper