- 低代码数字孪生智慧钢厂组态监控界面
图扑可视化
三维可视化数字孪生数据大屏组态监控智慧钢厂
2024年4月,中国钢铁工业协会发布了《钢铁行业数字化转型评估报告(2023年)》(以下简称《报告》)。《报告》指出,绝大部分钢铁企业建立了数字化转型相关管理组织和团队,并加强其规划落实,系统间的综合集成能力进一步加强。在研发、制造、服务全生命周期管控以及产业链协同等方面需继续深化,这也是现阶段钢铁企业数字化转型需重点建设的内容。钢铁行业作为典型的流程制造业,通过融合先进的信息技术和大数据分析,既
- UI前端与大数据的深度融合:打造智慧应用的新生态
前端开发与ui设计的老司机
ui前端大数据
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!在数字化转型的浪潮中,UI前端与大数据正逐渐成为推动智慧应用发展的核心力量。UI前端作为用户与应用程序交互的直接界面,负责提供直观、便捷且吸引人的用户体验;而大数据则凭借其强大的数据收集、分析和预测能力,为应用程序
- 数字孪生:未来城市管理的革命性技术
大有数据可视化
信息可视化
一、数字孪生技术概述数字孪生技术是一种通过创建虚拟模型与物理实体之间实时交互的技术。它借助物联网、大数据、云计算、人工智能等前沿技术,实现对物理实体的精准映射与动态仿真。数字孪生的核心在于构建一个与物理世界相对应的虚拟模型,该模型能够实时反映物理实体的状态,并通过数据分析与模拟优化其性能。在城市管理领域,数字孪生技术为城市管理者提供了一种全新的视角和工具。城市是一个复杂的巨系统,涉及基础设施、交通
- Python大数据分析&人工智能教程 - Django-Celery异步处理(深入解析与实战案例)
AI_DL_CODE
python数据分析DjangoCelery异步处理Celery
文章目录1.概念介绍1.1Django框架概述1.2Celery异步任务队列1.3AMQP协议与消息路由2.环境搭建2.1安装Django和Celery2.2配置Redis作为消息代理3.Celery架构与工作原理3.1Celery组件介绍3.2任务生命周期3.3任务调度与执行3.3.1定时任务3.3.2异步任务调用3.3.3任务结果查询4.Django与Celery集成4.1创建Celery实例
- Python大数据分析&人工智能教程 - Django-RestFramework框架(深入解析+实操案例)
AI_DL_CODE
python数据分析djangoRestFramework框架
文章目录1.Django-RestFramework基础1.1Django-RestFramework概述1.2安装与配置1.3构建第一个API1.3.1定义模型1.3.2创建序列化器1.3.3定义视图1.3.4配置URL路由1.4进阶功能1.4.1权限控制1.4.2限流1.5实战案例1.5.1创建图书1.5.2查询图书1.5.3更新图书1.5.4删除图书2.序列化器(Serializers)2.
- 算法备案 | 算法备案必要性、算法类型、备案流程
极创信息
人工智能AIGC
一、进行算法备案的必要性在当今的数字化时代,算法已经广泛应用于各个行业,引起了监管部门的高度关注,因为算法产品可能会带来一些潜在的风险。为了规范互联网信息服务中的算法推荐活动,抵制诸如深度生成合成、算法歧视、“大数据杀熟”、诱导沉迷等不合理应用,各个国家都先后出台了一系列关于算法管理的法律法规。在我国,《数据安全法》、《个人信息保护法》、《互联网信息服务算法推荐管理规定》等法律法规明确对算法的使用
- 集装箱智慧通关系统如何用AI技术重塑物流效率?
在全球贸易和物流高速发展的今天,港口、物流园区及企业的闸口管理面临巨大挑战——如何提升通关效率、保障货物安全并降低运营成本?集装箱智慧通关系统依托先进的AI视觉识别、物联网及大数据技术,为行业提供了智能化解决方案。核心技术:AI视觉+物联网赋能传统闸口依赖人工核验集装箱号、车辆信息,效率低且易出错。而智慧通关系统通过高精度摄像头+AI算法,可自动识别集装箱编号、货车车牌、货物类型等关键信息,准确率
- 从单一设备到万物互联:鸿蒙生态崛起的未来之路
王子良.
经验分享harmonyos华为
目录一、引言:开启智能时代的钥匙二、鸿蒙生态概述:跨设备协同的核心价值三、开发者机遇与挑战:抓住鸿蒙崛起的机会四、鸿蒙生态崛起的前景:万物互联的未来五、开发者在鸿蒙生态中的实践机遇与挑战1.跨设备开发的机遇2.与人工智能和物联网结合的创新空间3.持续创新与生态完善的挑战六、鸿蒙生态未来的多维发展:智能硬件与大数据的深度结合1.智能硬件与大数据的结合2.在智能家居与城市管理中的应用3.行业领域的深度
- 遥感云大数据在灾害、水体与湿地领域典型案例实践及GPT模型应用
科研的力量
生态遥感双碳chatgptGEE卫星遥感数据
以EarthEngine(GEE)、PIE-Engine为代表全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台应用越来越广泛。GEE平台存储和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星影像、气候与天气、地球物理等方面的数据集超过80PB,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。相比于ENVI等传统的遥感影像处理工具,G
- SeaTunnel 社区月报(5-6 月):全新功能上线、Bug 大扫除、Merge 之星是谁?
数据库
在5月和6月,SeaTunnel社区迎来了一轮密集更新:2.3.11正式发布,新增对Databend、Elasticsearch向量、HTTP批量写入、ClickHouse多表写入等多个连接器能力,全面提升了数据同步灵活性。同时,近100个修复与优化PR合入,涵盖Spark引擎并行性修复、Paimon精度兼容性增强、Mongo-CDCExactlyOnce默认值优化、OracleDDL类型支持补全
- **基于Python的数据分析与机器学习实战教程****一、引言**随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,
2401_89451588
python数据分析机器学习
基于Python的数据分析与机器学习实战教程一、引言随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,在数据分析领域得到了广泛的应用。本文将介绍如何使用Python进行数据分析,并结合机器学习算法实现数据驱动的应用。二、Python基础首先,我们需要掌握Python的基本语法和常用的库。Python的语法简洁易懂,上
- 深入了解大数据领域Zookeeper的ACL权限管理
AGI大模型与大数据研究院
大数据zookeeperwpfai
深入了解大数据领域Zookeeper的ACL权限管理关键词:Zookeeper、ACL权限管理、大数据安全、分布式系统、访问控制、权限模型、数据保护摘要:本文深入探讨了Zookeeper中的ACL(AccessControlList)权限管理系统。作为分布式协调服务的核心组件,Zookeeper的ACL机制对于保障大数据环境中的数据安全至关重要。文章将从基础概念出发,详细解析ZookeeperAC
- 场景题:有40亿个QQ号如何去重?仅1GB内存
卷福同学
社招面试面试阿里云京东云java
场景题也有一些套路可以考虑,比如去重、判断给定数据是否存在1.大数据去重1.1现在有40亿个QQ号如何去重?仅1GB内存参考链接:https://juejin.cn/post/7396332696660131849介绍2种方法:Bitmap和布隆过滤器方法一:Bitmap首先介绍下什么是位图Bitmap位图是使用bit数组表示的,它只存储0或者1,因此我们可以把全部的QQ号放到位图中,当index
- 深度剖析数据中台:大数据领域的核心技术架构
大数据洞察
大数据架构javaai
深度剖析数据中台:大数据领域的核心技术架构关键词:数据中台、大数据、核心技术架构、数据治理、数据服务摘要:本文旨在对数据中台这一大数据领域的核心技术架构进行深度剖析。首先介绍了数据中台的背景,包括其目的、适用读者、文档结构和相关术语。接着阐述了数据中台的核心概念、原理和架构,通过文本示意图和Mermaid流程图进行直观展示。详细讲解了核心算法原理及具体操作步骤,并结合Python源代码进行说明。引
- 2025年全球数据安全发展趋势
jinan886
人工智能大数据安全数据分析
随着云计算、大数据、人工智能等技术的迅猛发展,数据已成为驱动经济社会发展的关键生产要素。然而,数据泄露、网络攻击等安全事件频发,给个人隐私、企业利益乃至国家安全带来了前所未有的挑战。全球数据安全发展趋势正随着技术进步和威胁演变而不断变化,以下是主要趋势:1.数据隐私法规加强GDPR(欧盟《通用数据保护条例)和CCPA(加州消费者隐私法案)等法规推动了全球对数据隐私的重视,更多国家和地区正在制定或更
- elasticsearch 9200登录接口
leijmdas
elasticsearch
嗯,关于Elasticsearch通过9200端口的登录接口,本质是启用安全认证后对HTTP请求的身份验证机制。以下是核心要点及操作指南:一、认证方式基础认证(用户名+密码)访问http://localhost:9200时会弹出登录框,需输入用户名和密码。默认超级用户:elastic,首次安装后密码需通过命令生成:./bin/elasticsearch-reset-password-uelasti
- 机器学习在智能仓储中的应用:库存管理与物流优化
Blossom.118
机器学习与人工智能机器学习人工智能深度学习机器人sklearntensorflowcnn
最近研学过程中发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击链接跳转到网站人工智能及编程语言学习教程。读者们可以通过里面的文章详细了解一下人工智能及其编程等教程和学习方法。下面开始对正文内容的介绍。随着电子商务的蓬勃发展,仓储和物流行业面临着前所未有的挑战和机遇。智能仓储通过整合先进的信息技术,如物联网(IoT)、大数据和机器学习,能够实现从货物入库到出库的全流程
- 面经总结系列(十六): 元象科技大模型推理优化工程师
GoAI
AI面经总结机器学习算法人工智能大模型机器学习深度学习
作者简介:CSDN、阿里云人工智能领域博客专家,新星计划计算机视觉导师,百度飞桨PPDE,专注大数据与AI知识分享。✨公众号:GoAI的学习小屋,免费分享书籍、简历、导图等,更有交流群分享宝藏资料,关注公众号回复“加群”或➡️点击链接加群。AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的
- 大学专业科普 | 云计算、大数据
鸭鸭鸭进京赶烤
云计算大数据
大数据专业是近年来随着信息技术发展而兴起的热门学科,专注于从海量、多样化的数据中提取有价值信息,为各行业提供数据驱动的决策支持。专业定义大数据专业旨在培养掌握大数据采集、存储、管理、分析和应用等核心技术的人才。该专业融合了计算机科学、数学、统计学、数据科学和领域知识,重点解决大数据环境下的数据处理和分析问题。课程设置大数据专业的课程体系包括基础课程、专业核心课程和实践课程。(一)基础课程基础课程涵
- Python批量下载网易云音乐飙升榜所有音乐文件
Python_小屋
graphviznettygpuaiwebgl
Python小屋刷题神器最近升级的新功能介绍推荐教材:《Python程序设计基础与应用》(ISBN:9787111606178),董付国,机械工业出版社,2018.8出版,2021.3第11次印刷作者荣誉:机械工业出版社计算机分社成立20周年本科教材”金牌作者“,机械工业出版社高等教育教材专家咨询委员会委员,机械工业出版社”面向新工科高等院校大数据专业系列教材“编审委员会委员,全国高等院校计算机基
- Springboot整合Elasticsearch及常用方法大全
水木石画室
springbootelasticsearchjenkins
SpringBoot整合Elasticsearch是企业级开发中常见的需求,用于实现高效的全文检索、日志分析等功能。以下是整合的核心步骤和常用方法大全,涵盖从基础配置到高级操作的完整流程。一、环境准备与依赖配置1.环境要求Elasticsearch:需先安装并启动(建议7.10+或8.x版本,与SpringDataElasticsearch兼容)。SpringBoot:推荐2.7.x或3.x版本(
- 一款wordperss AI免费插件自动内容生成+前端AI交互+文章批量采集
Linkreate
前端人工智能wordpresswordpressAI插件wordpress免费插件wordpress自动发文自动发文源码
一款LinkreatewordperssAI自动内容生成+前端AI会话窗口交互+文章批量采集免费插件1.SEO优化文章生成关键词驱动的内容生成:用户可以输入关键词或长尾关键词,插件会根据这些关键词生成高质量的SEO优化文章。文章结构清晰,语言自然流畅,符合SEO标准,能够有效提升网站内容的搜索引擎排名。自定义文章长度和要求:用户可以根据需要指定文章的长度(字数)以及对文章的额外要求,例如内容风格、
- 如何在宝塔面板中配置SSL证书?
奔跑吧邓邓子
高效运维ssl服务器网络协议
提示:“奔跑吧邓邓子”的高效运维专栏聚焦于各类运维场景中的实际操作与问题解决。内容涵盖服务器硬件(如IBMSystem3650M5)、云服务平台(如腾讯云、华为云)、服务器软件(如Nginx、Apache、GitLab、Redis、Elasticsearch、Kubernetes、Docker等)、开发工具(如Git、HBuilder)以及网络安全(如挖矿病毒排查、SSL证书配置)等多个方面。无论
- 大数据ETL工具比较:Sqoop vs Flume vs Kafka
AI天才研究院
AI人工智能与大数据大数据etlsqoopai
大数据ETL工具比较:SqoopvsFlumevsKafka关键词:大数据ETL、Sqoop、Flume、Kafka、数据迁移、日志采集、消息队列摘要:在大数据生态中,ETL(抽取-转换-加载)是数据价值挖掘的关键环节。不同业务场景对数据传输的实时性、可靠性、数据类型有差异化需求,催生了Sqoop、Flume、Kafka等特色鲜明的ETL工具。本文从核心架构、工作原理、性能指标、实战案例四个维度,
- 导师要求一天完成综述,我7分钟搞定——打造一个全本地DeepResearch助手
小洛~·~
人工智能深度学习chatgptgptAI写作
1.项目背景LocalDeepResearcher是一个本地化运行的AI研究助手,旨在通过结合大语言模型(LLM)和搜索工具,实现自动化深度研究并生成结构化报告。该项目由LangChainAI开发,支持本地模型(例如通过Ollama运行的deepseek-r1:7b)和云端模型(例如Claude、GPT),并集成了多种搜索引擎(如Tavily、DuckDuckGo)。其本地优先的设计确保了数据隐私
- 分类预测 | MATLAB实现BP神经网络多特征分类预测
matlab科研社
分类matlab神经网络
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍近年来,随着大数据时代的到来以及计算能力的显著提升,人工智能技术得到了飞速发展。在众多人工智能算法中,反向传播神经网络(BackPropagationNeuralNetwork,BP神经网络)凭借其强大的非
- 如何向AI提问?
人邮异步社区
人工智能AI编程程序员大模型
如何向AI提问?让我们从DeepSeek开始入手。DeepSeek不是一个单纯的搜索引擎,更不是一个单纯听你指令的、只会执行命令的“机器人”。如果只是把它单纯当作高级搜索、当作执行命令的机器人,就严重低估了它的价值。DeepSeek能帮我们完成如下工作:DeepSeek的这几个功能是什么?结合DeepSeekApp界面,我们详细介绍一下几个常用的功能。上传文件:除了采用文字交互方式,用户也可以上传
- 推荐几本人工智能方面的书(入门级)
人邮异步社区
人工智能深度学习神经网络
以下推荐几本适合入门人工智能的书籍,帮助你逐步建立基础知识和理解:一、数学基础类《数学之美》推荐理由:深入浅出地讲解了自然语言处理与搜索方向的数学原理,对于理解算法背后的数学逻辑非常有帮助。本书的章节名称,有“统计语言模型”“谈谈中文分词”“贾里尼克和现代语言处理”“布尔代数和搜索引擎”“信息指纹及其应用”等,似乎太过专业,实际上高中和大学低年级的同学们都能看得懂,当然本书因此也可以称得上是“高级
- 线性代数-第9篇:二次型与正定矩阵:优化问题的数学基础
程序员勇哥
人工智能(AI)线性代数人工智能大数据python
线性代数-第9篇:二次型与正定矩阵:优化问题的数学基础在人工智能、量化投资和大数据分析中,优化问题无处不在,比如机器学习的损失函数最小化、量化投资组合的风险最小化等。而二次型与正定矩阵作为线性代数中的重要概念,为解决这些优化问题提供了坚实的数学基础。本篇将深入解析它们的原理及其在实际场景中的关键应用。一、二次型:从向量到函数的桥梁1.定义与表达式二次型是一个关于向量x\mathbf{x}x的二次齐
- 电商用户行为可视化大屏--大数据项目
一.项目目的1.深入了解服务:用户的浏览路径、购买频率、商品评价等数据,能够精准地刻画用户画像。了解用户的年龄、性别、地域等基本信息,以及他们的兴趣爱好、消费习惯等更深入的特征,从而为个性化的营销和服务提供依据。2.优化用户体验:通过分析用户在页面之间的跳转时间、购物车的使用情况等,找出可能存在的流程不畅或设计不合理的地方。3.提高运营效率:对商品销售数据、库存数据等进行关联分析,有助于合理安排库
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$