- 网关边缘计算:让数据处理更贴近 一线
北京天拓四方
边缘计算人工智能
在工业4.0与智慧城市的浪潮中,数据如同新时代的石油,驱动着各行各业的变革。然而,传统云计算模式下,数据需长途跋涉至云端处理,这不仅带来了延迟问题,更在带宽成本、隐私安全等方面遭遇瓶颈。此时,网关边缘计算作为“边缘智能”的核心技术,正悄然改变着数据处理的规则——它将计算能力下沉到网络边缘,让数据在“家门口”就能完成分析与决策。一、技术亮点:边缘智能的三大突破1.低延迟响应,实时决策无忧在智能制造车
- 2025年渗透测试面试题总结-字某某动-安全研究实习生(二面)(题目+回答)
独行soc
2025年渗透测试面试指南面试职场和发展安全网络安全红蓝攻防护网
网络安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。目录字某某动-安全研究实习生(二面)1.护网行动中的核心工作2.防护层级选择(WAF/IDS)3.误报治理方案4.内网误报分布场景5.MySQL执行PowerShell防护6.资产收集经验7.漏洞攻击案例8.SQL注入攻防详解原理防御方案OrderBy防御特殊字符处理9.
- 双目立体视觉(6.1)测距
2501_90596733
双目立体视觉计算机视觉人工智能opencv
在计算机视觉领域,双目相机测距是一项关键技术,它通过模拟人类双眼的视觉机制,利用两个相机从不同角度拍摄同一场景,进而计算出物体的深度信息。一、双目测距的基本原理1.1视差图(DisparityMap)视差图是一种存储了单视图所有像素的视差值的二维图像。视差值是同一物体在左右两幅图像中的列坐标差,即通过比较左右两幅图像的对应像素差异来计算物体的深度信息。视差图是以图像对中任一幅图像为基准生成的,其大
- 工作中常用的linux命令,Linux日常工作中比较实用的一些命令合集。
Wu Jerry
工作中常用的linux命令
系统uname-a查看内核/操作系统/CPU信息head-n1/etc/issue查看操作系统版本cat/proc/cpuinfo查看CPU信息hostname查看计算机名lsmod列出加载的内核模块env查看环境变量资源free-m查看内存使用量和交换区使用量df-h查看各分区使用情况du-sh查看指定目录的大小grepMemTotal/proc/meminfo查看内存总量grepMemFree
- 物联网服务器搭建及部署详细说明:掌握 Node.js、MongoDB、Socket.IO 和 JWT 的实用指南
极客小张
物联网服务器node.jsmongodb数据库json运维开发
关键知识点目录1.环境准备1.1硬件要求1.2软件要求2.搭建步骤3.数据处理与存储3.1数据存储3.2数据实时处理3.2.1安装Socket.IO3.2.2修改服务器代码4.安全性4.1身份验证与授权4.2加密通信4.2.1生成自签名证书(开发环境)4.2.2修改服务器以支持HTTPS5.数据分析和可视化5.1集成Grafana5.2.2图表数据更新6.事件处理与报警6.1事件检测7.接口与集成
- Service 无法访问后端 Pod,如何逐步定位问题
沉默的八哥
运维运维kubernetes
Service无法访问后端Pod的逐步排查指南一、基础信息确认检查Service和Pod是否在相同Namespacekubectlgetsvc-n #确认ServiceNamespacekubectlgetpods-n #确认Pod是否存在验证Pod是否处于Running状态kubectlgetpods-n--show-labels #检查Pod状态和标签ku
- 深度学习模型:原理、应用与代码实践
accurater
c++算法笔记人工智能深度学习
引言深度学习作为人工智能的核心技术,已在图像识别、自然语言处理、代码生成等领域取得突破性进展。其核心在于通过多层神经网络自动提取数据特征,解决复杂任务。本文将从基础理论、模型架构、优化策略、应用场景及挑战等多个维度展开,结合代码示例,系统解析深度学习模型的技术脉络与实践方法。一、深度学习基础理论神经网络基本原理神经网络由输入层、隐藏层和输出层构成,通过反向传播算法调整权重。以全连接网络为例,前向传
- C++ 学生成绩管理系统
非德77
c++算法开发语言
一、项目背景与核心需求成绩管理系统是高校教学管理的重要工具,本系统采用C++面向对象编程实现,主要功能模块包括:学生信息管理(学号/姓名/3门课程成绩)成绩增删改查(CRUD)操作数据持久化存储统计分析与报表生成用户友好交互界面二、系统架构设计1.类结构设计采用经典的MVC分层思想:示意图如下:┌──────────────┐┌──────────────┐│Student││ScoreSyste
- Vim常用命令备忘
assaper
vim编辑器linux
文章目录一、Vim支持模式二、Vim常用命令1.光标移动2.文本操作3.查找置换4.保存退出5.多文件编辑6.多窗口编辑7.多标签编辑8.目录操作9.运行命令10.可视化操作11.其他命令一、Vim支持模式普通模式:打开文件时的默认模式,在其他模式下按Esc键都可返回到该模式。插入模式:在普通模式下按i/a/o键进入该模式,进行文本编辑操作。命令行模式:在普通模式下输入:后会进入该模式,在该模式下
- 简单分享下Python数据可视化
小软件大世界
信息可视化python开发语言
在数据科学的广阔天地里,数据可视化是不可或缺的一环,它让复杂的数据变得易于理解。对于Python初学者而言,掌握Matplotlib和Seaborn这两个强大的库,无疑能让你的分析报告更加生动有趣。本文专为渴望提升数据可视化技能的你设计,通过15个实用技巧,带你从基础走向高级,探索数据背后的精彩故事。1.基础条形图-简单入手Matplotlib示例:import matplotlib.pyplot
- 如何打造多种风格的三维地图?2月27日直播讲解演示
山海鲸可视化
数字孪生GIS系统数字孪生数据可视化可视化大屏GIS三维地图
欢迎扫码图片中的二维码订阅直播,也可以在Bilibili关注“山海鲸可视化”,我们将于同一时间进行直播。
- ResNet 改进:轻量级的混合本地信道注意机制MLCA
听风吹等浪起
AI改进系列深度学习opencv计算机视觉
目录1.MLCA注意力机制2.改进位置3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.MLCA注意力机制MLCA(MixedLocalChannelAttention)是一种轻量级的混合本地信道注意机制,旨在提升卷积神经网络(CNN)在图像处理任务中的性能。它通过结合局部和全局信息来增强特征表示能力,同时保持较低的计算复杂度。核心思想:MLCA的核心
- 电商行业门店管理软件架构设计与数据可视化实践
阿三0404
pythonjava电商
一、行业痛点与核心诉求在电商多平台运营成为主流的背景下,企业普遍面临三大管理难题:数据碎片化:某头部服饰品牌2023年运营报告显示,其分布在8个平台的162家门店,日均产生23万条订单数据,但财务部门需要5个工作日才能完成跨平台利润核算。成本核算失真:行业调研表明,38%的企业存在物流费用分摊不合理问题,平均误差率达到14.7%。决策响应滞后:传统周报模式导致40%的库存调拨指令错过最佳执行窗口,
- 计算机二级第32套题
计算机小林
windows
ppt1设置数据标签选项:将食物列复制到数据表格→设置数据标签→单元格的值2坐标轴无动画:删除背景动画3图片不会被打印:视图→黑白模式→选中图片点击不显示4添加合适的可选文字:信息→检查辅助功能→选择要添加的文字,随便添加Word1插入文本框:上下型环绕2制表位位置40字符,右对齐,制表符形状33转换为图表不要带单位,Excel升序排列,显示单位无,对数刻度2,横坐标轴交叉,坐标轴值0.125Ex
- 用于网络安全的生成式 AI:利用 AI 增强威胁检测和响应
云上笛暮
AIforSecurity人工智能
一、引言技术的进步彻底改变了我们的生活、工作和交流方式。然而,随着这些技术的进步,保护它们免受网络威胁的挑战也随之而来。网络安全已成为任何组织的重要组成部分,随着网络攻击越来越复杂,传统的威胁检测和响应方法已不再足够。这导致了生成人工智能等新技术的发展,这些技术在增强网络安全方面显示出巨大潜力。在这篇博客中,我们将探讨生成式人工智能的概念、它在网络安全中的重要性,以及它如何用于增强威胁检测和响应。
- Python与数据可视化案例:电影评分可视化
master_chenchengg
pythonpython办公效率python开发IT
Python与数据可视化案例:电影评分可视化电影评分数据的魅力:为什么可视化很重要数据收集:如何获取电影评分数据使用API接口网络爬虫技术数据清洗与预处理:让数据变得干净整洁可视化实战:用Matplotlib和Seaborn绘制电影评分图表电影评分数据的魅力:为什么可视化很重要对于电影爱好者而言,电影评分不仅仅是数字那么简单,它承载着无数影迷的期待与梦想。想象一下,当你站在电影院门口,面对琳琅满目
- Python与数据可视化库Seaborn实战
master_chenchengg
python信息可视化python开发语言
Python与数据可视化库Seaborn实战一、引言二、技术概述Seaborn介绍核心特性和优势代码示例:简单散点图三、技术细节技术原理技术难点四、实战应用应用场景问题与解决方案五、优化与改进潜在问题改进建议六、常见问题七、总结与展望一、引言Python,作为一门功能强大且易于学习的编程语言,近年来在数据科学领域取得了显著地位。其丰富的库支持,尤其是数据可视化库,极大地促进了数据分析和洞察能力的提
- 生物信息学工作流(Bioinformatics Workflow):概念、历史、现状与展望?
lisw05
生物信息学生物信息学工作流
李升伟整理1.引言生物信息学工作流是指通过一系列计算步骤和工具,对生物学数据进行处理、分析和解释的系统化流程。随着高通量测序技术的普及和生物数据的爆炸式增长,生物信息学工作流在基因组学、转录组学、蛋白质组学等领域中扮演着至关重要的角色。它不仅提高了数据分析的效率,还为生命科学研究提供了新的视角和方法。2.生物信息学工作流的概念生物信息学工作流的核心是将复杂的生物学数据分析任务分解为多个可管理的步骤
- 可视化学习:WebGL实现简易的局部“马赛克”
前言接触过Canvas的小伙伴应该都知道,在Canvas2D中我们要加载一个图片很简单,通过调用drawImageAPI就能将图像绘制到画布上,当然在WebGL中我们也可以绘制图像,在绘制时我们需要用到WebGL中的纹理对象,在之前WebGL实现网格背景的文章中,我使用了一个叫做纹理坐标的配置,现在要完成纹理的加载我们也需要用到纹理坐标,并且我们可以通过对纹理坐标处理实现简单的”马赛克“效果。通过
- 可视化学习:使用WebGL绘制圆形,实现色盘
前言在Canvas2D中实现圆形的绘制比较简单,只要调用arc指令就能在Canvas画布上绘制出一个圆形,类似的,在SVG中我们也只需要一个标签就能在页面上绘制一个圆形。那么在WebGL中我们要怎么去绘制呢?WebGL只能绘制三种形状:点、线段和三角形,它没有提供直接绘制圆形的功能,当然也无法像SVG一样使用标签,所以我们是无法直接绘制圆形曲线的,这个时候我们可以借助相关的数学知识,来实现圆形的绘
- Pytest自动化框架搭建
柯有Q
pytest自动化python运维
背景入职了一家小公司,需要从0开始搭建一个自动化测试环境,因为是测试板卡项目,所以需要使用串口连接工具pyserial,测试用例批量化执行工具pytest,测试报告自动生成工具allure,大家根据这三个关键词选择是否需要继续阅读1.技术实现1.1技术说明使用pyserial作为串口连接工具,发送读写命令;使用pytest作为用例批量管理工具;使用allure对测试结果进行可视化处理,自动生成测试
- 深度解构:DeepSeek大模型架构与前沿应用的未来探秘
威哥说编程
架构ai
随着人工智能(AI)领域的快速发展,深度学习模型逐渐向着更加复杂和强大的方向演进。在这一波技术浪潮中,DeepSeek大模型作为一个重要代表,凭借其卓越的表现和广泛的应用,正在重新定义我们对AI的认知和期待。本篇文章将从架构到应用,全面解析DeepSeek大模型的技术特点,探索其在未来可能带来的创新与变革。1.DeepSeek大模型的架构设计DeepSeek大模型采用的是基于Transformer
- [FFmpeg] 软解码将mp4解码为yuv420文件
努力学习的谢老板
ffmpeg视频编解码音视频
文章目录概要整体架构流程代码小结概要使用ffmpeg软件解码mp4文件,解码为yuv420p类型的数据。整体架构流程1.打开输入流文件avformat_open_input2.获取输入流信息avformat_find_stream_info3.获取视频流信息av_find_best_stream4.创建一个解码的上下文avcodec_alloc_context35.获取原文件解码参数avcodec
- python的pandas函数
soputasmile11
pythonpythonpandas开发语言
Pandas是Python中一个强大且广泛使用的数据分析库,它提供了高效的数据结构和数据操作工具,主要的数据结构有Series(一维数组)和DataFrame(二维表格)。下面将详细介绍Pandas中一些常用函数和方法的用法。1.安装与导入使用pip安装Pandas:pipinstallpandas在Python代码中导入Pandas,通常使用pd作为别名:importpandasaspd2.创建
- T41LQ专为人工智能物联网(AIoT)应用设计,适用于智能安防、智能家居、机器视觉等领域 软硬件资料+样品测试
li15817260414
君正人工智能物联网智能家居
君正(Ingenic)T系列芯片涵盖多个型号,每个型号根据不同应用需求提供了多个版本。以下是各型号及其主要版本:1.T23系列:T23N:标准版,适用于移动摄像机、安全监控、视频通话和视频分析等应用。T23ZN:佐罗标准版,功能与T23N类似,针对特定市场需求进行了优化。2.T31系列:T31L:简化版,适用于对成本和功耗有严格要求的应用场景。T31N:标准版,适用于广泛的智能视频应用。T31X:
- 人工智能生成内容(AIGC)对程序员的影响
AmHardy
AIGC人工智能AIGC程序员chatgptkimi
人工智能生成内容(AIGC)对程序员的影响引言AIGC技术正在深刻影响软件开发行业,给程序员带来诸多机遇和挑战。程序员不仅需要适应这些新兴技术,还要有效利用它们来提升自己的工作效率和创新能力。AIGC技术的优势效率提升代码生成:AI工具如GitHubCopilot可以预测代码片段、自动完成代码和生成文档,从而显著提升编程效率。自动化测试:AI可以自动生成测试用例和检测代码中的潜在问题,减少了手动测
- 海量数据融合互通丨TiDB 在安徽省住房公积金监管服务平台的应用实践
TiDB_PingCAP
tidbhtap分布式
导读安徽省住房公积金监管服务平台通过整合全省17家公积金中心的数据,致力于实现数据共享、规范化管理与高效数据分析。为了应对海量数据处理需求,安徽省选择TiDB作为底层数据库,利用其分布式架构和HTAP能力,实现了快速的数据分析与治理。TiDB的高效性能提升了平台的数据处理能力和查询效率,为全省公积金数据的统一管理与共享提供了有力支持。本文将详细介绍TiDB在平台中的应用与实际效果,以及TiDB如何
- 【数学建模技术】路径规划算法-Dijkstra算法
一键难忘
数学建模技术超入门Dijkstra数学建模算法路径规划算法
路径规划算法-Dijkstra算法1.引言路径规划是许多领域中的核心问题,尤其是在机器人导航、地理信息系统(GIS)、交通管理等方面。路径规划算法的主要目标是寻找从起点到终点的最短路径。Dijkstra算法作为一种经典的单源最短路径算法,广泛应用于各种实际问题中。本篇文章将详细探讨Dijkstra算法的原理、应用场景,并通过代码实例进行深入解析。2.Dijkstra算法原理Dijkstra算法是由
- 【精辟】venv和Anaconda的区别?
王摇摆
ANACONDApython
venv和Anaconda是两种不同的工具,用于管理Python环境和包依赖,它们之间有以下区别:来源和适用性:venv:venv是Python的标准库中提供的模块,从Python3.3版本开始引入。它是Python官方推荐的创建和管理虚拟环境的工具,适用于任何Python安装。Anaconda:Anaconda是一个跨平台的Python发行版,提供了用于科学计算和数据分析的大量库和工具。它包含了
- 【路径规划】基于A算法和Dijkstra算法的路径规划附Python代码
天天Matlab科研工作室
无人机matlab仿真电子资源算法python开发语言
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍路径规划作为人工智能和机器人技术领域的核心问题之一,在导航、交通运输、游戏开发等领域有着广泛的应用。解决路径规划问题,旨在找到一条从起始点到目标点,并满足特定约束条件(如最短
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/pwd@192.168.0.5:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理