C++ 卷积神经网络

C++ 卷积神经网络

注意:此项目未使用GPU加速
训练时使用文件(可自己制作):
t10k-images.idx3-ubyte
t10k-labels.idx1-ubyte
读取图片文件时使用opencv



TP_NNW.h 对使用的相关方法进行封装

#pragma once
#include
#include
#include
#pragma comment(lib,"opencv_world300d.lib")
#define ALPHA 0.01
#define BETA 0.95
#define RATIO 0.2
struct bit
{
	unsigned B : 1;
	void operator=(int x);
};
enum Conv_flag
{
	Valid = 0,
	Same = 1
};
struct Vector2 {
	int height, width;
	Vector2();
	Vector2(char height, int width);
};
class Weight
{
private:
	void apply(int H/*高度*/, int W/*宽度*/);
	void apply(int H/*高度*/, int W/*宽度*/, float(*def)());
public:
	bool fz;
	Vector2 len;
	float **WG;
	~Weight();
	Weight() { fz = false; }
	Weight(int H/*高度*/,int W/*宽度*/);
	Weight(int H/*高度*/, int W/*宽度*/,float (*def)());
	void re(float *delta,float *inp,float alpha= ALPHA);
	void save(FILE *fp);
	void load(FILE *fp);
	void release();
	void operator>>(Weight &temp);
	void operator+=(Weight &temp);
	//void operator/=(int &temp);
	void operator/=(int temp);
	void operator<<(Weight & temp);
	void friend WD(Weight *WGS,int H,int W, int len);
	void friend WD(Weight *WGS, int H, int W, int len, float(*def)());
};
float zeros();
float ones();
float ***Pool(float ***y, Vector2 &inp, int P, Vector2 &out);//池化
float ***Conv(float **X, Vector2 &inp, Vector2 &out, Weight*W, int W_len);//卷积
void print(float *y, int y_len = 1);
void print(float *y, Vector2 &vec);
void print(float **y, Vector2 &vec);
void print(char *y, int y_len = 1);
void print(char **y, Vector2 &vec);
void print(Weight &w);
void print(Weight *w,int len=1);
float **apply2(int H/*高度*/, int W/*宽度*/);
float ***apply3(int P,int H/*高度*/, int W/*宽度*/);
char **apply2_char(int H/*高度*/, int W/*宽度*/);
float *apply1(int H);
char *apply1_char(int H);
float Get_rand();
float Sigmoid(float x);
float *Sigmoid(float *x, Weight &w);
float *Sigmoid(float *x, int height);
float ReLU(float x);
float *ReLU(float *x, Weight &w);
float *ReLU(float *x, int height);
float *Softmax(float *x, Weight &w);
float dsigmoid(float x);
float *Softmax(float *x, int height);
float *FXCB_err(Weight &w, float *delta);
float *Delta1(float *y, float *e, Weight &w);
float *Delta2(float *v, float *e, Weight &w);
float *dot(Weight &W/*权重*/, float *inp/*输入数据*/,int *len=NULL);
char *randperm(int max, int count);
void Dropout(float *y, float ratio, Weight &w);
float ** conv2(float **x,Vector2 &x_len, float **fiter, Vector2 &fiter_len,
	Vector2*out_len = NULL, int flag = Valid, int distance=1,int fill=0);
float ** VALID(float **x, int x_h, int x_w, float **fiter, int fiter_h, 
	int fiter_w, int distance, Vector2*out_len=NULL);
float ** SAME(float **x, int x_h, int x_w, float **fiter, int fiter_h, 
	int fiter_w, int distance, int fill, Vector2*out_len=NULL);
int VALID_out_len(int x_len, int fiter_len, int distance);
void show_Weight(Weight &W);
void rot90(Weight &x);
float** rot90(float **x,Vector2 &x_len,bool release=false);
float** rot180(float **x, Vector2 &x_len, bool release = false);
float** Get_data_by_Mat(char *filepath, Vector2 &out_len);
char** Get_data_by_Mat_char(char *filepath, Vector2 &out_len,int threshold=127);
void Get_data_by_Mat(char *filepath, Weight &w);
Weight Get_data_by_Mat(char *filepath);
float *reshape(float **x, int h, int w);
float *reshape(float **x, Vector2 &x_len);
float *reshape(float ***x, Vector2 &x_len, int P,bool releace=false);
namespace mnist
{
	char **Toshape2(char*x, int h, int w);
	char **Toshape2(char*x, Vector2 &x_len);
	void Toshape2(char **out, char *x, int h, int w);
	void Toshape2(char **out, char *x, Vector2 &x_len);
	float **Toshape2_F(char*x, int h, int w);
	float **Toshape2_F(char*x, Vector2 &x_len);
	void Toshape2(float **out, char *x, int h, int w);
	void Toshape2(float **out, char *x, Vector2 &x_len);
	void Toshape2(float **out, unsigned char *x, int h, int w);
	void Toshape2(float **out, unsigned char *x, Vector2 &x_len);
	float ***Toshape3(float *x, int P, Vector2 &x_len);
	int ReverseInt(int i);
}
struct XML
{
	char *name;
	FILE *fp;
	int layer;
	XML(FILE *fp, char *name,int layer);
	void showchild();
};
template<class T>
class hot_one
{
	bool fz;
public:
	T*one;
	int num;
	int count;
	hot_one() { this->fz = false; }
	hot_one(int type_num, int set_num=0)
	{
		type_num = type_num <= 0 ? 1 : type_num;
		if (set_num >= type_num)
			set_num = 0;
		this->count = type_num;
		this->fz = true;
		this->num = set_num;
		this->one = new T[type_num]{ 0 };
		this->one[set_num] = 1;
	}
	void re(int set_num)
	{
		this->one[num] = 0;
		this->num = set_num;
		this->one[this->num] = 1;
	}
	void release()
	{
		if (this->fz)delete one;
			this->fz = false;
	}
	~hot_one()
	{
		this->release();
	}
};
int *bList( int distance, int max,int *out_len);
void Free2(float **x,int h);
void Free3(float ***x,int p, int h);
void kron(float **out, Vector2 &out_len, float **inp, Vector2 &inp_len, float **filter,
	Vector2 &filter_len);

TP_NNW.cpp实现封装的方法

#include"TP_NNW.h"

void Weight::apply(int H, int W)
{
	fz = true;
	this->len.height = H;
	this->len.width = W;
	this->WG = apply2(H, W);//申请内存
	for (int i = 0; i < H; i++)
		for (int j = 0; j < W; j++)
			this->WG[i][j] = Get_rand();//得到随机值
}

void Weight::apply(int H, int W, float(*def)())
{
	fz = true;
	this->len.height = H;
	this->len.width = W;
	this->WG = apply2(H, W);
	for (int i = 0; i < H; i++)
		for (int j = 0; j < W; j++)
			this->WG[i][j] = def();
}

Weight::~Weight()
{
	this->release();
}

Weight::Weight(int H/*高度*/, int W/*宽度*/)
{
	W = W <= 0 ? 1 : W;//防止出现0和负数
	H = H <= 0 ? 1 : H;//防止出现0和负数
	fz = true;
	this->apply(H, W);
}

Weight::Weight(int H/*高度*/, int W/*宽度*/, float(*def)())
{
	W = W <= 0 ? 1 : W;
	H = H <= 0 ? 1 : H;
	fz = true;
	this->apply(H,W, def);
}

void Weight::re(float * delta, float * inp, float alpha)
{
	for (int i = 0; i < this->len.height; i++)
	{
		for (int j = 0; j < this->len.width; j++)
			this->WG[i][j] += alpha*delta[i] * inp[j];
	}
}

void Weight::save(FILE * fp)
{
	for (int i = 0; i < this->len.height; i++)
		for (int j = 0; j < this->len.width; j++)
			fwrite(&this->WG[i][j], sizeof(float), 1, fp);
}

void Weight::load(FILE * fp)
{
	for (int i = 0; i < this->len.height; i++)
		for (int j = 0; j < this->len.width; j++)
			fread(&this->WG[i][j], sizeof(float), 1, fp);
}

void Weight::release()
{
	if (this->fz)
	{
		Free2(this->WG, this->len.height);
		//free(this->WG);
	}
	this->fz = false;
}
void Weight::operator >> (Weight & temp)
{
	temp.release();
		//free(temp.WG);
	temp.apply(this->len.height, this->len.width, zeros);
}
void Weight::operator+=(Weight & temp)
{
	for (int i = 0; i < this->len.height; i++)
		for (int j = 0; j < this->len.width; j++)
			this->WG[i][j] += temp.WG[i][j];
}

//void Weight::operator/=(int & temp)
//{
//	for (int i = 0; i < this->len.height; i++)
//		for (int j = 0; j < this->len.width; j++)
//			this->WG[i][j] /= temp;
//}

void Weight::operator/=(int temp)
{
	for (int i = 0; i < this->len.height; i++)
		for (int j = 0; j < this->len.width; j++)
			this->WG[i][j] /= temp;
}

void Weight::operator<<(Weight & temp)
{
	Free2(this->WG, this->len.height);
	this->len.height = temp.len.height;
	this->len.width = temp.len.width;
	this->WG = temp.WG;
}

void WD(Weight * WGS, int H, int W, int len)
{
	for (int i = 0; i < len; i++)
	{
		WGS[i].apply(H, W);
	}
}
void WD(Weight * WGS, int H, int W, int len, float(*def)())
{
	for (int i = 0; i < len; i++)
	{
		WGS[i].apply(H, W,def);
	}
}
float zeros()
{
	return 0;
}


void print(float * y, int y_len)
{
	for (int i = 0; i < y_len; i++)
	{
		printf("%0.2f ", y[i]);
		//printf("%d ", y[i]>0?1:0);
	}
	puts("");
}

void print(float * y, Vector2 & vec)
{
	print(y, vec.height);
}

void print(float ** y, Vector2 & vec)
{
	for (int i = 0; i < vec.height; i++)
		print(y[i], vec.width);
}

void print(char * y, int y_len)
{
	for (int i = 0; i < y_len; i++)
	{
		printf("%d ", y[i]);
	}
	puts("");
}

void print(char ** y, Vector2 & vec)
{
	for (int i = 0; i < vec.height; i++)
		print(y[i], vec.width);
}

void print(Weight &w)
{
	print(w.WG, w.len);
}

void print(Weight * w, int len)
{
	for (int i = 0; i < len; i++)
	{
		printf("\n第%d层\n",i+1);
		print(w[i]);
	}
}


float ** apply2(int H, int W)
{
	float **temp = (float**)malloc(sizeof(float**)*H);
	for(int i=0;i<H;i++)
		temp[i]= (float*)malloc(sizeof(float*)*W);
	return temp;
}

float *** apply3(int P, int H/*高度*/, int W/*宽度*/)
{
	float ***temp = (float***)malloc(sizeof(float***)*P);
	for (int i = 0; i < P; i++)
		temp[i] = apply2(H, W);
	return temp;
}

char ** apply2_char(int H, int W)
{
	char **temp = (char**)malloc(sizeof(float**)*H);
	for (int i = 0; i<H; i++)
		temp[i] = (char*)malloc(sizeof(float*)*W);
	return temp;
}
float ones()
{
	return 1;
}
float ***Conv(float **X, Vector2 &inp, Vector2 &out, Weight*W, int W_len)
{
	out.height = inp.height - W[0].len.height + 1;
	out.width = inp.width - W[0].len.width + 1;
	float ***temp = (float***)malloc(sizeof(float***)*W_len);
	for (int k = 0; k < W_len; k++)
		temp[k] = conv2(X, inp, W[k].WG, W[0].len);
	return temp;
}
float ***Pool(float ***y, Vector2 &inp, int P, Vector2 &out)
{
	int h = inp.height / 2, w = inp.width / 2;
	out.height = h;
	out.width = w;
	float ***temp = apply3(P, h, w);
	float **filter = apply2(2, 2);
	for (int i = 0; i < 2; i++)
		for (int j = 0; j < 2; j++)
			filter[i][j] = 0.25;
	for (int k = 0; k < P; k++)
	{
		Vector2 len;
		float **img = conv2(y[k], inp, filter, Vector2(2, 2), &len);
		for (int i = 0; i < h; i++)
			for (int j = 0; j < w; j++)
				temp[k][i][j] = img[i * 2][j * 2];
		Free2(img, len.height);
	}
	Free2(filter, 2);
	return temp;
}
float * apply1(int H)
{
	float *temp = (float*)malloc(sizeof(float*)*H);
	return temp;
}

char * apply1_char(int H)
{
	char *temp = (char*)malloc(sizeof(char*)*H);
	return temp;
}

float Get_rand()
{
	float temp = (float)(rand() % 10)/(float)10;
	return rand()%2==0?temp:-temp;
}

float Sigmoid(float x)
{
	return 1/(1+exp(-x));
}

float * Sigmoid(float * x, Weight &w)
{
	return Sigmoid(x, w.len.height);
}

float * Sigmoid(float * x, int height)
{
	float *y = (float*)malloc(sizeof(float*)*height);
	for (int i = 0; i < height; i++)
		y[i] = Sigmoid(x[i]);
	return y;
}

float ReLU(float x)
{
	return x>0?x:0;
}

float * ReLU(float * x, Weight & w)
{
	return ReLU(x, w.len.height);
}

float * ReLU(float * x, int height)
{
	float *y = (float*)malloc(sizeof(float*)*height);
	for (int i = 0; i < height; i++)
		y[i] = ReLU(x[i]);
	return y;
}

float * Softmax(float * x, Weight & w)
{
	return Softmax(x, w.len.height);
}

float dsigmoid(float x)
{
	return x*(1-x);
}

float * Softmax(float * x, int height)
{
	float *t = new float[height];
	float *ex = new float[height];
	float sum = 0;
	for (int i = 0; i < height; i++)
	{
		ex[i] = exp(x[i]);
		sum += ex[i];
	}
	for (int i = 0; i < height; i++)
	{
		t[i] = ex[i] / sum;
	}
	delete ex;
	return t;
}

float * FXCB_err(Weight & w, float * delta)
{
	float *temp = (float*)malloc(sizeof(float*)*w.len.width);
	for (int i = 0; i < w.len.width; i++)
		temp[i] = 0;
	for (int i = 0; i < w.len.width; i++)
		for (int j = 0; j < w.len.height; j++)
			temp[i] += w.WG[j][i] * delta[j];
	return temp;
}

float * Delta1(float * y, float *e, Weight & w)
{
	float *temp = (float*)malloc(sizeof(float*)*w.len.height);
	for (int i = 0; i < w.len.height; i++)
		temp[i] = y[i] * (1 - y[i])*e[i];
	return temp;
}

float * Delta2(float * v, float *e, Weight & w)
{
	float *temp = (float*)malloc(sizeof(float*)*w.len.height);
	for (int i = 0; i < w.len.height; i++)
		temp[i] = v[i] > 0 ? e[i] : 0;
	return temp;
}

float * dot(Weight & W, float * inp, int *len)
{
	float *temp = (float*)malloc(sizeof(float*)*W.len.height);
	for (int i = 0; i < W.len.height; i++)
		temp[i] = 0;
	for (int i = 0; i < W.len.height; i++)
	{
		for (int j = 0; j < W.len.width; j++)
			temp[i] += (W.WG[i][j] * inp[j]);
	}
	if (len != NULL)
		*len = W.len.height;
	return temp;
}

char * randperm(int max, int count)
{
	char *temp = new char[count] {0};
	for (int i = 0; i < count; i++)
	{
		while (1)
		{
			char t = rand() % max;
			bool nothave = true;
			for (int j = 0; j < i; j++)
				if (t == temp[j])
				{
					nothave = false;
					break;
				}
			if (nothave)
			{
				temp[i] = t;
				break;
			}
		}
	}
	return temp;
}

void Dropout(float * y, float ratio, Weight & w)
{
	float *ym = new float[w.len.height] {0};
	float round = w.len.height*(1 - ratio);
	int num = (round - (float)(int)round >= 0.5f ? (int)round + 1 : (int)round);
	char *idx = randperm(w.len.height, num);
	for (int i = 0; i < num; i++)
	{
		ym[idx[i]] = (1 / (1 - ratio));
	}
	for (int i = 0; i < w.len.height; i++)
	{
		y[i] *= ym[i];
	}
	delete idx;
	delete ym;
}

float ** conv2(float ** x, Vector2 & x_len, float ** fiter, Vector2 & fiter_len, Vector2*out_len, int flag, int distance, int fill)
{
	switch (flag)
	{
	case Valid:return VALID(x,x_len.height,x_len.width, fiter, fiter_len.height, fiter_len.width, distance,out_len);
	case Same:return SAME(x, x_len.height, x_len.width, fiter, fiter_len.height, fiter_len.width, distance, fill, out_len);
	}
	return nullptr;
}

float ** VALID(float ** x, int x_h, int x_w, float ** fiter, int fiter_h, int fiter_w, int distance, Vector2*out_len)
{
	int h = VALID_out_len(x_h, fiter_h, distance);
	int w = VALID_out_len(x_w, fiter_w, distance);
	float **temp = apply2(h, w);
	float **t = fiter;
	if (out_len != NULL)
	{
		out_len->height = h;
		out_len->width = w;
	}
	for(int i=0;i<x_h+1- fiter_h;i+=distance)
		for (int j = 0; j < x_w + 1 - fiter_w; j += distance)
		{
			float count = 0;
			for(int n=i;n<i+fiter_h;n++)
				for (int m = j; m < j + fiter_w; m++)
				{
					if (n >= x_h || m >= x_w)
						continue;
					count += (x[n][m] * t[n - i][m - j]);
				}
			temp[(i / distance)][(j / distance)] = count;
		}
	//free(t);
	return temp;
}

float ** SAME(float ** x, int x_h, int x_w, float ** fiter, int fiter_h, int fiter_w, int distance, int fill, Vector2*out_len)
{
	return nullptr;
}

int VALID_out_len(int x_len, int fiter_len, int distance)
{
	float temp = (float)(x_len - fiter_len) / (float)distance;
	int t = temp - (int)((float)temp) >= 0.5 ? (int)temp + 1 : (int)temp;
	t++;
	return t;
}

void show_Weight(Weight & W)
{
	for (int i = 0; i < W.len.height; i++)
	{
		for (int j = 0; j < W.len.width; j++)
		{
			printf("%0.3f ", W.WG[i][j]);
		}
		puts("");
	}
}
void rot90(Weight & x)
{
	int h = x.len.width, w = x.len.height;
	x.WG=rot90(x.WG, x.len,true);
	x.len.width = w;
	x.len.height = h;
}
float** rot90(float ** x, Vector2 & x_len, bool release)
{
	float**temp = apply2(x_len.width,x_len.height);
	for(int i=0;i<x_len.height;i++)
		for (int j = 0; j < x_len.width; j++)
		{
			temp[x_len.width-1-j][i]=x[i][j];
		}
	if (release)
	{
		Free2(x, x_len.height);
		//free(x);
	}
	return temp;
}

float ** rot180(float ** x, Vector2 & x_len, bool release)
{
	float**temp = apply2(x_len.height, x_len.width);
	for (int i = 0; i < x_len.height; i++)
	{
		for (int j = 0; j < x_len.width; j++)
		{
			temp[x_len.height - 1 - i][x_len.width - 1 - j] = x[i][j];
		}
	}
	if (release)
	{
		Free2(x, x_len.height);
		//free(x);
	}
	return temp;
}

float ** Get_data_by_Mat(char * filepath, Vector2 & out_len)
{
	cv::Mat mat = cv::imread(filepath,0);
	cv::resize(mat, mat, cv::Size(28, 28));
	/*cv::imshow("tt", mat);
	cv::waitKey(0);*/
	out_len.height = mat.rows;
	out_len.width = mat.cols;
	float **temp = apply2(mat.rows, mat.cols);
	int c = 0;
	for(int i=0;i<mat.rows;i++)
		for (int j = 0; j < mat.cols; j++)
		{
			temp[i][j] = ((float)mat.data[c++] / (float)255);
			//temp[i][j] = 1 - temp[i][j];
		}
	mat.release();
	return temp;
}

char ** Get_data_by_Mat_char(char * filepath, Vector2 & out_len, int threshold)
{
	cv::Mat mat = cv::imread(filepath, 0);
	out_len.height = mat.rows;
	out_len.width = mat.cols;
	char **temp = apply2_char(mat.rows, mat.cols);
	int c = 0;
	for (int i = 0; i<mat.rows; i++)
		for (int j = 0; j < mat.cols; j++)
		{
			temp[i][j] =mat.data[c++]>threshold?0:1;
		}
	mat.release();
	return temp;
}

void Get_data_by_Mat(char *filepath, Weight & w)
{
	w.WG = Get_data_by_Mat(filepath, w.len);
}

Weight Get_data_by_Mat(char * filepath)
{
	Weight temp;
	Get_data_by_Mat(filepath, temp);
	return temp;
}

Vector2::Vector2()
{
	this->height = 0;
	this->width = 0;
}

Vector2::Vector2(char height, int width)
{
	this->height = height;
	this->width = width;
}

XML::XML(FILE * fp, char * name, int layer)
{
	this->fp = fp;
	this->name = name;
	this->layer = layer;
}

void XML::showchild()
{
	char reader[500];
	while (fgets(reader, 500, this->fp))
	{
		int len = strlen(reader);
		int lay = 0;
		for (; lay < len; lay++)
		{
			if (reader[lay] != '\t')break;
		}
		if (lay == this->layer)
		{
			if (reader[lay + 1] == '/')continue;
			char show[500];
			memset(show, 0, 500);
			for (int i = lay + 1; i < len - 2; i++)
			{
				if (reader[i] == '>')break;
				show[i - lay - 1] = reader[i];
			}
			puts(show);
		}
	}
	fseek(this->fp, 0, 0);
}

void bit::operator=(int x)
{
	this->B = x;
}

float * reshape(float ** x, int h, int w)
{
	float *temp = (float*)malloc(sizeof(float*)*w*h);
	int count = 0;
	for (int i = 0; i<h; i++)
		for (int j = 0; j < w; j++)
		{
			temp[count++] = x[i][j];
		}
	return temp;
}

float * reshape(float ** x, Vector2 & x_len)
{
	return reshape(x, x_len.height, x_len.width);
}

float * reshape(float *** x, Vector2 & x_len, int P, bool releace)
{
	float *temp = apply1(x_len.height*x_len.width*P);
	int c = 0;
	for (int i = 0; i < P; i++)
		for (int n = 0; n < x_len.height; n++)
			for (int m = 0; m < x_len.width; m++)
				temp[c++] = x[i][n][m];
	if (releace)
		Free3(x, P, x_len.height);
		//free(x);
	return temp;
}

int * bList(int distance, int max, int *out_len)
{
	int num = (max%distance!=0);
	int t = (int)(max / distance);
	t += num;
	if (out_len != NULL)
		*out_len = t;
	int *out = (int*)malloc(sizeof(int*)*t);
	for (int i = 0; i < t; i++)
	{
		out[i] = i*distance;
	}
	return out;
}

void Free2(float ** x, int h)
{
	for (int i = 0; i < h; i++)
		free(x[i]);
	free(x);
}

void Free3(float *** x, int p, int h)
{
	for (int i = 0; i < p; i++)
		for (int j = 0; j < h; j++)
			free(x[i][j]);
	for (int i = 0; i < p; i++)
		free(x[i]);
	free(x);
}

void kron(float ** out, Vector2 & out_len, float ** inp, Vector2 & inp_len, float ** filter, Vector2 & filter_len)
{
	for(int i=0;i<inp_len.height;i++)
		for (int j = 0; j < inp_len.width; j++)
		{
			for(int n=i*2;n<out_len.height&&n<((i*2)+filter_len.height);n++)
				for (int m = (j*2); m < ((j*2)+ filter_len.width)&&m<out_len.width; m++)
				{
					out[n][m] = inp[i][j] * filter[n - (i * 2)][m - (j * 2)]*0.25;
				}
		}
}

char ** mnist::Toshape2(char * x, int h, int w)
{
	char **temp = apply2_char(h, w);
	int c = 0;
	for (int i = 0; i < h; i++)
		for (int j = 0; j < w; j++)
			temp[i][j] = x[c++];
	return temp;
}

char ** mnist::Toshape2(char * x, Vector2 & x_len)
{
	return mnist::Toshape2(x, x_len.height, x_len.width);
}

void mnist::Toshape2(char ** out, char * x, int h, int w)
{
	int c = 0;
	for (int i = 0; i < h; i++)
		for (int j = 0; j < w; j++)
			out[i][j] = x[c++];
}

void mnist::Toshape2(char ** out, char * x, Vector2 & x_len)
{
	mnist::Toshape2(out,x, x_len.height, x_len.width);
}

float ** mnist::Toshape2_F(char * x, int h, int w)
{
	float **temp = apply2(h, w);
	int c = 0;
	for (int i = 0; i < h; i++)
		for (int j = 0; j < w; j++)
			temp[i][j] = ((float)x[c++]/(float)255);
	return temp;
}

float ** mnist::Toshape2_F(char * x, Vector2 & x_len)
{
	return mnist::Toshape2_F(x, x_len.height, x_len.width);
}

void mnist::Toshape2(float ** out, char * x, int h, int w)
{
	int c = 0;
	for (int i = 0; i < h; i++)
		for (int j = 0; j < w; j++)
			out[i][j] = ((float)x[c++] / (float)255);
}

void mnist::Toshape2(float ** out, char * x, Vector2 & x_len)
{
	mnist::Toshape2(out, x, x_len.height, x_len.width);
}

void mnist::Toshape2(float ** out, unsigned char * x, int h, int w)
{
	int c = 0;
	for (int i = 0; i < h; i++)
		for (int j = 0; j < w; j++)
		{
			out[i][j] = ((float)x[c++] / (float)255);
		}
}

void mnist::Toshape2(float ** out, unsigned char * x, Vector2 & x_len)
{
	mnist::Toshape2(out, x, x_len.height, x_len.width);
}

float *** mnist::Toshape3(float * x, int P, Vector2 & x_len)
{
	float ***temp = apply3(P, x_len.height, x_len.width);
	int c = 0;
	for (int i = 0; i < P; i++)
		for (int j = 0; j < x_len.height; j++)
			for (int n = 0; n < x_len.width; n++)
				temp[i][j][n] = x[c++];
	return temp;
}

int mnist::ReverseInt(int i)
{
	unsigned char ch1, ch2, ch3, ch4;
	ch1 = i & 255;
	ch2 = (i >> 8) & 255;
	ch3 = (i >> 16) & 255;
	ch4 = (i >> 24) & 255;
	return((int)ch1 << 24) + ((int)ch2 << 16) + ((int)ch3 << 8) + ch4;
}

conv.cpp 主函数在这里

#include"TP_NNW.h"
using namespace std;
using namespace cv;
using namespace mnist;

float *SGD(Weight *W1, Weight &W5, Weight &Wo, float **X)
{
	Vector2 ve(28, 28);
	float *temp = new float[10];
	Vector2 Cout;
	float ***y1 = Conv(X, ve, Cout, W1, 20);
	for (int i = 0; i < 20; i++)
		for (int n = 0; n < Cout.height; n++)
			for (int m = 0; m < Cout.width; m++)
				y1[i][n][m] = ReLU(y1[i][n][m]);
	float ***y2 = y1;
	Vector2 Cout2;
	float ***y3 = Pool(y1, Cout, 20, Cout2);
	float *y4 = reshape(y3, Cout2, 20, true);
	float *v5 = dot(W5, y4);
	float *y5 = ReLU(v5, W5);
	float *v = dot(Wo, y5);
	float *y = Softmax(v, Wo);
	for (int i = 0; i < Wo.len.height; i++)
		temp[i] = y[i];
	return temp;
}
void trainSGD(Weight *W1, Weight &W5, Weight &Wo, FILE *fp,FILE *tp)
{
	Vector2 ve(28, 28);
	unsigned char *reader = new unsigned char[ve.height * ve.width];
	float **X = apply2(ve.height, ve.width);
	unsigned char hao;
	hot_one<char> D(10);

	Weight *momentum1 = new Weight[20];//动量
	Weight momentum5;
	Weight momentumo;
	Weight *dW1 = new Weight[20];//动量
	Weight dW5;
	Weight dWo;
	for (int i = 0; i < 20; i++)
		W1[0] >> momentum1[i];
	W5 >> momentum5;
	Wo >> momentumo;
	int N = 8000;//训练集取前8000个
	int bsize = 100;//100个纠正一次
	int b_len;
	int *blist = bList(bsize, N, &b_len);
	for (int batch = 0; batch < b_len; batch++)
	{
		for (int i = 0; i < 20; i++)
			W1[0] >> dW1[i];
		W5 >> dW5;
		Wo >> dWo;
		int begins = blist[batch];
		for (int k = begins; k < begins+bsize&&k<N; k++)
		{
			fread(reader, sizeof(unsigned char), ve.height * ve.width, fp);//读取图像
			Toshape2(X,reader, ve);//组合成二维数组
			Vector2 Cout;//储存卷积后数组的尺寸  20
			float ***y1 = Conv(X, ve, Cout, W1, 20);//卷积
			for (int i = 0; i < 20; i++)
				for (int n = 0; n < Cout.height; n++)
				{
					for (int m = 0; m < Cout.width; m++)
					{
						y1[i][n][m] = ReLU(y1[i][n][m]);//通过ReLU函数
					}
				}
			float ***y2 = y1;//给变量y2
			Vector2 Cout2;//记录池化后的尺寸   10
			float ***y3 = Pool(y1, Cout, 20, Cout2);//池化层
			float *y4 = reshape(y3, Cout2, 20, true);//作为神经元输入
			float *v5 = dot(W5, y4);//矩阵乘法
			float *y5 = ReLU(v5, W5);//ReLU函数
			float *v = dot(Wo, y5);//举证乘法
			float *y = Softmax(v, Wo);//soft分类
			fread(&hao, sizeof(unsigned char), 1, tp);//读取标签
			D.re(hao);
			float *e = new float[10];
			for (int i = 0; i < 10; i++)
				e[i] = ((float)D.one[i]) - y[i];
			float *delta = e;
			float *e5 = FXCB_err(Wo, delta);
			float *delta5 = Delta2(y5, e5, W5);
			float *e4 = FXCB_err(W5, delta5);
			float ***e3 = Toshape3(e4, 20, Cout2);
			float ***e2 = apply3(20, Cout.height, Cout.width);
			Weight one(2, 2, ones);
			/*for (int i = 0; i < 20; i++)
			{
				printf("第%d层\n", i);
				for (int n = 0; n < Cout2.height; n++)
				{
					for (int m = 0; m < Cout2.width; m++)
						printf("%0.3f ", e3[i][n][m]);
					puts("");
				}
			}
			getchar();*/
			for (int i = 0; i < 20; i++)//---------------------------------
				kron(e2[i], Cout, e3[i], Cout2, one.WG, one.len);

			/*for (int i = 0; i < 20; i++)
			{
				printf("第%d层\n", i);
				for (int n = 0; n < Cout.height; n++)
				{
					for (int m = 0; m < Cout.width; m++)
						printf("%f ", e2[i][n][m]);
					puts("");
				}
			}
			getchar();*/

			float ***delta2 =apply3(20, Cout.height, Cout.width);
			for (int i = 0; i < 20; i++)
				for (int n = 0; n < Cout.height; n++)
					for (int m = 0; m < Cout.width; m++)
						delta2[i][n][m] = (y2[i][n][m] > 0)*e2[i][n][m];
			float ***delta_x = (float***)malloc(sizeof(float***) * 20);
			Vector2 t1;
			for (int i = 0; i < 20; i++)
				delta_x[i] = conv2(X, ve, delta2[i], Cout,&t1);
			for (int i = 0; i < 20; i++)
				for (int n = 0; n < t1.height; n++)
					for (int m = 0; m < t1.width; m++)
						dW1[i].WG[n][m] += delta_x[i][n][m];
			dW5.re(delta5, y4,1);
			dWo.re(delta, y5, 1);

			Free3(delta_x, 20, t1.height);
			Free3(delta2, 20, Cout.height);
			one.release();
			Free3(e2, 20, Cout.height);
			Free3(e3, 20, Cout2.height);
			free(e4);
			free(delta5);
			free(e5);
			free(v5);
			delete e;
			free(y5);
			free(v);
			free(y);
			Free3(y1,20, Cout.height);
			free(y4);
		}
		for (int i = 0; i < 20; i++)
			dW1[i] /= (bsize);
		dW5/=(bsize);
		dWo/=(bsize);
		for (int i = 0; i < 20; i++)
			for (int n = 0; n < W1[0].len.height; n++)
				for (int m = 0; m < W1[0].len.width; m++)
				{
					momentum1[i].WG[n][m] = ALPHA*dW1[i].WG[n][m] + BETA*momentum1[i].WG[n][m];
					W1[i].WG[n][m] += momentum1[i].WG[n][m];
				}
		for (int n = 0; n < W5.len.height; n++)
			for (int m = 0; m < W5.len.width; m++)
				momentum5.WG[n][m] = ALPHA*dW5.WG[n][m] + BETA*momentum5.WG[n][m];
		W5 += momentum5;
		for (int n = 0; n < Wo.len.height; n++)
			for (int m = 0; m < Wo.len.width; m++)
				momentumo.WG[n][m] = ALPHA*dWo.WG[n][m] + BETA*momentumo.WG[n][m];
		Wo += momentumo;

	}
	for (int i = 0; i < 20; i++)
	{
		momentum1[i].release();
		dW1[i].release();
	}
	momentum5.release();
	momentumo.release();
	Free2(X,ve.height);
	free(blist);
	delete reader;
	D.release();
	dW5.release();
	dWo.release();
	return;
}
void trainSGD1(Weight *W1, Weight &W5, Weight &Wo, FILE *fp, FILE *tp)
{
	Vector2 ve(28, 28);
	unsigned char *reader = new unsigned char[ve.height * ve.width];
	float **X = apply2(ve.height, ve.width);
	unsigned char hao;
	hot_one<char> D(10);

	Weight *momentum1 = new Weight[20];//动量
	Weight momentum5;
	Weight momentumo;
	Weight *dW1 = new Weight[20];//动量
	Weight dW5;
	Weight dWo;
	for (int i = 0; i < 20; i++)
		W1[0] >> momentum1[i];
	W5 >> momentum5;
	Wo >> momentumo;
	int N = 108;//训练集取前8000个
	int bsize = 12;//100个纠正一次
	int b_len;
	int *blist = bList(bsize, N, &b_len);
	for (int batch = 0; batch < b_len; batch++)
	{
		for (int i = 0; i < 20; i++)
			W1[0] >> dW1[i];
		W5 >> dW5;
		Wo >> dWo;
		int begins = blist[batch];
		for (int k = begins; k < begins + bsize&&k<N; k++)
		{
			fread(reader, sizeof(unsigned char), ve.height * ve.width, fp);//读取图像
			Toshape2(X, reader, ve);//组合成二维数组
			Vector2 Cout;//储存卷积后数组的尺寸  20
			float ***y1 = Conv(X, ve, Cout, W1, 20);//卷积
			for (int i = 0; i < 20; i++)
				for (int n = 0; n < Cout.height; n++)
				{
					for (int m = 0; m < Cout.width; m++)
					{
						y1[i][n][m] = ReLU(y1[i][n][m]);//通过ReLU函数
					}
				}
			float ***y2 = y1;//给变量y2
			Vector2 Cout2;//记录池化后的尺寸   10
			float ***y3 = Pool(y1, Cout, 20, Cout2);//池化层
			float *y4 = reshape(y3, Cout2, 20, true);//作为神经元输入
			float *v5 = dot(W5, y4);//矩阵乘法
			float *y5 = ReLU(v5, W5);//ReLU函数
			float *v = dot(Wo, y5);//举证乘法
			float *y = Softmax(v, Wo);//soft分类
			fread(&hao, sizeof(unsigned char), 1, tp);//读取标签
			D.re(hao);
			float *e = new float[10];
			for (int i = 0; i < 10; i++)
				e[i] = ((float)D.one[i]) - y[i];
			float *delta = e;
			float *e5 = FXCB_err(Wo, delta);
			float *delta5 = Delta2(y5, e5, W5);
			float *e4 = FXCB_err(W5, delta5);
			float ***e3 = Toshape3(e4, 20, Cout2);
			float ***e2 = apply3(20, Cout.height, Cout.width);
			Weight one(2, 2, ones);
			/*for (int i = 0; i < 20; i++)
			{
			printf("第%d层\n", i);
			for (int n = 0; n < Cout2.height; n++)
			{
			for (int m = 0; m < Cout2.width; m++)
			printf("%0.3f ", e3[i][n][m]);
			puts("");
			}
			}
			getchar();*/
			for (int i = 0; i < 20; i++)//---------------------------------
				kron(e2[i], Cout, e3[i], Cout2, one.WG, one.len);

			/*for (int i = 0; i < 20; i++)
			{
			printf("第%d层\n", i);
			for (int n = 0; n < Cout.height; n++)
			{
			for (int m = 0; m < Cout.width; m++)
			printf("%f ", e2[i][n][m]);
			puts("");
			}
			}
			getchar();*/

			float ***delta2 = apply3(20, Cout.height, Cout.width);
			for (int i = 0; i < 20; i++)
				for (int n = 0; n < Cout.height; n++)
					for (int m = 0; m < Cout.width; m++)
						delta2[i][n][m] = (y2[i][n][m] > 0)*e2[i][n][m];
			float ***delta_x = (float***)malloc(sizeof(float***) * 20);
			Vector2 t1;
			for (int i = 0; i < 20; i++)
				delta_x[i] = conv2(X, ve, delta2[i], Cout, &t1);
			for (int i = 0; i < 20; i++)
				for (int n = 0; n < t1.height; n++)
					for (int m = 0; m < t1.width; m++)
						dW1[i].WG[n][m] += delta_x[i][n][m];
			dW5.re(delta5, y4, 1);
			dWo.re(delta, y5, 1);

			Free3(delta_x, 20, t1.height);
			Free3(delta2, 20, Cout.height);
			one.release();
			Free3(e2, 20, Cout.height);
			Free3(e3, 20, Cout2.height);
			free(e4);
			free(delta5);
			free(e5);
			free(v5);
			delete e;
			free(y5);
			free(v);
			free(y);
			Free3(y1, 20, Cout.height);
			free(y4);
		}
		for (int i = 0; i < 20; i++)
			dW1[i] /= (bsize);
		dW5 /= (bsize);
		dWo /= (bsize);
		for (int i = 0; i < 20; i++)
			for (int n = 0; n < W1[0].len.height; n++)
				for (int m = 0; m < W1[0].len.width; m++)
				{
					momentum1[i].WG[n][m] = ALPHA*dW1[i].WG[n][m] + BETA*momentum1[i].WG[n][m];
					W1[i].WG[n][m] += momentum1[i].WG[n][m];
				}
		for (int n = 0; n < W5.len.height; n++)
			for (int m = 0; m < W5.len.width; m++)
				momentum5.WG[n][m] = ALPHA*dW5.WG[n][m] + BETA*momentum5.WG[n][m];
		W5 += momentum5;
		for (int n = 0; n < Wo.len.height; n++)
			for (int m = 0; m < Wo.len.width; m++)
				momentumo.WG[n][m] = ALPHA*dWo.WG[n][m] + BETA*momentumo.WG[n][m];
		Wo += momentumo;

	}
	for (int i = 0; i < 20; i++)
	{
		momentum1[i].release();
		dW1[i].release();
	}
	momentum5.release();
	momentumo.release();
	Free2(X, ve.height);
	free(blist);
	delete reader;
	D.release();
	dW5.release();
	dWo.release();
	return;
}
float rand1()
{
	float temp = (rand() % 20) / (float)10;
	if (temp < 0.0001)
		temp = 0.07;
	temp *= (rand() % 2 == 0) ? -1 : 1;
	return temp*0.01;
}
float rand2()
{
	float temp = (rand() % 10) / (float)10;
	float ret = (2 * temp - 1)*sqrt(6) / sqrt(360 + 2000);
	if (ret < 0.0001&&ret>-0.0001)
		ret = 0.07;
	return ret;
}
float rand3()
{
	float temp = (rand() % 10) / (float)10;
	float ret = (2 * temp - 1)*sqrt(6) / sqrt(10 + 100);
	if (ret < 0.0001&&ret>-0.0001)
		ret = 0.07;
	return ret;
}

void train()
{
	FILE *fp = fopen("t10k-images.idx3-ubyte", "rb");
	FILE *tp = fopen("t10k-labels.idx1-ubyte", "rb");
	int rdint;
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集幻数:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集数量:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集高度:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集宽度:%d\n", ReverseInt(rdint));
	int start1 = ftell(fp);
	fread(&rdint, sizeof(int), 1, tp);
	printf("标签幻数:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, tp);
	printf("标签数量:%d\n", ReverseInt(rdint));
	int start2 = ftell(tp);
	Weight *W1 = new Weight[20];
	WD(W1, 9, 9, 20, rand1);
	Weight W5(100, 2000, rand2);
	Weight Wo(10, W5.len.height, rand3);
	for (int k = 0; k < 3; k++)
	{
		trainSGD(W1, W5, Wo, fp, tp);
		fseek(fp, start1, 0);
		fseek(tp, start2, 0);
		printf("第%d次训练结束\n", k+1);
	}
	fclose(fp);
	fclose(tp);
	fp = fopen("mnist_Weight.acp", "wb");
	for (int i = 0; i < 20; i++)
		W1[i].save(fp);
	W5.save(fp);
	Wo.save(fp);
	fclose(fp);
	printf("训练完成");
	getchar();
}
void train1()
{
	FILE *fp = fopen("out_img.acp", "rb");
	FILE *tp = fopen("out_label.acp", "rb");
	int rdint;
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集幻数:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集数量:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集高度:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集宽度:%d\n", ReverseInt(rdint));
	int start1 = ftell(fp);
	fread(&rdint, sizeof(int), 1, tp);
	printf("标签幻数:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, tp);
	printf("标签数量:%d\n", ReverseInt(rdint));
	int start2 = ftell(tp);
	Weight *W1 = new Weight[20];
	WD(W1, 9, 9, 20, rand1);
	Weight W5(100, 2000, rand2);
	Weight Wo(10, W5.len.height, rand3);
	for (int k = 0; k < 1000; k++)
	{
		trainSGD1(W1, W5, Wo, fp, tp);
		fseek(fp, start1, 0);
		fseek(tp, start2, 0);
		printf("第%d次训练结束\n", k + 1);
	}
	fclose(fp);
	fclose(tp);
	fp = fopen("mnist_Weight.acp", "wb");
	for (int i = 0; i < 20; i++)
		W1[i].save(fp);
	W5.save(fp);
	Wo.save(fp);
	fclose(fp);
	printf("训练完成");
	getchar();
}
void test()
{
	FILE *fp = fopen("mnist_Weight.acp", "rb");
	Weight *W1 = new Weight[20];
	WD(W1, 9, 9, 20, rand1);
	Weight W5(100, 2000, rand1);
	Weight Wo(10, W5.len.height, rand1);
	for (int i = 0; i < 20; i++)
		W1[i].load(fp);
	W5.load(fp);
	Wo.load(fp);
	fclose(fp);
	fp = fopen("t10k-images.idx3-ubyte", "rb");
	FILE *tp = fopen("t10k-labels.idx1-ubyte", "rb");
	int rdint;
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集幻数:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集数量:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集高度:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集宽度:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, tp);
	printf("标签幻数:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, tp);
	printf("标签数量:%d\n", ReverseInt(rdint));
	unsigned char *res = new unsigned char[28 * 28];
	float **X = apply2(28, 28);
	unsigned char biaoqian;
	for (int i = 0; i < 50; i++)
	{
		fread(res, sizeof(unsigned char), 28 * 28, fp);
		Toshape2(X, res, 28, 28);
		print(X, Vector2(28, 28));
		float *h = SGD(W1, W5, Wo, X);//带入神经网络
		int c = -1;
		for (int i = 0; i < 10; i++)
		{
			if (h[i] > 0.85)
			{
				c = i;
				break;
			}
		}
		fread(&biaoqian, sizeof(unsigned char), 1, tp);
		printf("正确结果应当为“%d”,      神经网络识别为“%d”   \n", biaoqian, c);
	}
}
Weight *W1;
Weight W5(100, 2000, rand1);
Weight Wo(10, W5.len.height, rand1);
void sb()
{
	
	//printf("加载权重完毕\n");
	Vector2 out;
	char path[256];
	for (int r = 0; r < 4; r++)
	{
		sprintf(path, "acp%d.png", r);
		float **img = Get_data_by_Mat(path, out);
		//print(img, out);
		float *h = SGD(W1, W5, Wo, img);//带入神经网络
		int c = -1;
		float x = 0;
		for (int i = 0; i < 10; i++)
		{
			if (h[i] > 0.85&&h[i]>x)
			{
				x = h[i];
				c = i;
			}
		}
		printf("%d ", c);
		Free2(img, out.height);
		free(h);
		remove(path);
	}
	puts("");
}

void sb(char *path)
{
	FILE *fp = fopen("mnist_Weight.acp", "rb");
	//puts("开始加载权重");
	WD(W1, 9, 9, 20, rand1);
	for (int i = 0; i < 20; i++)
		W1[i].load(fp);
	W5.load(fp);
	Wo.load(fp);
	fclose(fp);
	//printf("加载权重完毕\n");
	Vector2 out;
		float **img = Get_data_by_Mat(path, out);
		print(img, out);
		float *h = SGD(W1, W5, Wo, img);//带入神经网络
		int c = -1;
		float x = 0;
		for (int i = 0; i < 10; i++)
		{
			printf("%f\n", h[i]);
			if (h[i] > 0.65&&h[i]>x)
			{
				x = h[i];
				c = i;
			}
		}
		printf("%d %f", c,x);
		Free2(img, out.height);
		free(h);

}
bool thank(Vec3b &a, Vec3b &b)
{
	int dis = 0;
	for (int i = 0; i < 3; i++)
	{
		int t = (a[i] - b[i]);
		dis += t*t;
	}
	dis = (int)pow((float)dis, 0.5);
	if (dis < 100)
		return true;
	return false;
}
void qg(char *path)
{
	printf(path);
	printf("识别为:");
	Mat img = imread(path);
	Vec3b yes = Vec3b(204, 198, 204);
	Mat sav = Mat(120, 80, CV_8UC3);
	resize(img, img, Size(img.cols * 10, img.rows * 10));
	for (int i = 0; i<img.rows; i++)
		for (int j = 0; j < img.cols; j++)
		{
			Vec3b rgb = img.at<Vec3b>(i, j);
			if (thank(rgb, yes))
				img.at<Vec3b>(i, j) = Vec3b(255, 255, 255);
			/*else
				img.at(i, j) = Vec3b(0, 0, 0);*/
		}
	char p[256];
	for (int k = 0; k < 4; k++)
	{
		sprintf(p, "acp%d.png", k);
		for (int i = 35 + (k * 80); i < 115 + (k * 80); i++)
			for (int j = 30; j < 150; j++)
				sav.at<Vec3b>(j-30, i-(35 + (k * 80))) = img.at<Vec3b>(j, i);
		imwrite(p, sav);
	}
	img.release();
	sav.release();
	sb();
}
void test1()
{
	FILE *fp = fopen("mnist_Weight.acp", "rb");
	Weight *W1 = new Weight[20];
	WD(W1, 9, 9, 20, rand1);
	Weight W5(100, 2000, rand1);
	Weight Wo(10, W5.len.height, rand1);
	for (int i = 0; i < 20; i++)
		W1[i].load(fp);
	W5.load(fp);
	Wo.load(fp);
	fclose(fp);
	fp = fopen("out_img.acp", "rb");
	FILE *tp = fopen("out_label.acp", "rb");
	int rdint;
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集幻数:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集数量:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集高度:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, fp);
	printf("训练集宽度:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, tp);
	printf("标签幻数:%d\n", ReverseInt(rdint));
	fread(&rdint, sizeof(int), 1, tp);
	printf("标签数量:%d\n", ReverseInt(rdint));
	unsigned char *res = new unsigned char[28 * 28];
	float **X = apply2(28, 28);
	unsigned char biaoqian;
	for (int i = 0; i < 10; i++)
	{
		fread(res, sizeof(unsigned char), 28 * 28, fp);
		Toshape2(X, res, 28, 28);
		print(X, Vector2(28, 28));
		float *h = SGD(W1, W5, Wo, X);//带入神经网络
		int c = -1;
		for (int i = 0; i < 10; i++)
		{
			if (h[i] > 0.85)
			{
				c = i;
				break;
			}
		}
		fread(&biaoqian, sizeof(unsigned char), 1, tp);
		printf("正确结果应当为“%d”,      神经网络识别为“%d”   \n", biaoqian, c);
	}
}
void main(int argc,char **argv)
{
	//train1();
	//train();
	if (argc > 1)
	{
		FILE *fp = fopen("mnist_Weight.acp", "rb");
		//puts("开始加载权重");
		W1 = new Weight[20];
		WD(W1, 9, 9, 20, rand1);
		for (int i = 0; i < 20; i++)
			W1[i].load(fp);
		W5.load(fp);
		Wo.load(fp);
		fclose(fp);
		for(int i=1;i<argc;i++)
			qg(argv[i]);
			printf("完毕");
		getchar();
	}
}

你可能感兴趣的:(C++,代码,神经网络,c++,cnn,深度学习)