- EmbodiedSAM:在线实时3D实例分割,利用视觉基础模型实现高效场景理解
数据猎手小k
3D实例分割在线实时感知视觉基础模型(VFM)应用
2025-02-12,由清华大学和南洋理工大学的研究团队开发一种名为EmbodiedSAM(ESAM)的在线3D实例分割框架。该框架利用2D视觉基础模型辅助实时3D场景理解,解决了高质量3D数据稀缺的难题,为机器人导航、操作等任务提供了高效、准确的视觉感知能力。一、研究背景随着机器人技术和人工智能的发展,机器人在复杂环境中执行任务(如导航、操作和交互)的能力越来越依赖于对三维(3D)场景的实时、准
- 网络安全还值得学习吗?
黑客呀
计算机网络安全网络工程师web安全学习安全
在信息化时代,网络安全行业备受关注,可谓是万人瞩目。而且网络安全也被贴上了前景好、需求大、潜力广、就业好、薪资高等标签,那么网络安全真的值得学习吗?我们一起来看看吧。答案是肯定的,网络安全是非常值得学习的技术。市场需求:随着互联网的普及和数字化转型的加速,网络安全问题日益凸显。企业、政府和个人对网络安全的需求不断增长,这导致了网络安全专业人才的稀缺。因此,从市场需求的角度来看,网络安全专业具有较大
- Redis是如何轻松实现系统秒杀的?
程序员小英
redis数据库缓存
什么是秒杀秒杀场景一般会在电商网站举行一些活动或者节假日在12306网站上抢票时遇到。对于电商网站中一些稀缺或者特价商品,电商网站一般会在约定时间点对其进行限量销售,因为这些商品的特殊性,会吸引大量用户前来抢购,并且会在约定的时间点同时在秒杀页面进行抢购。秒杀系统场景特点秒杀时大量用户会在同一时间同时进行抢购,网站瞬时访问流量激增。秒杀一般是访问请求数量远远大于库存数量,只有少部分用户能够秒杀成功
- SeisMoLLM: Advancing Seismic Monitoring via Cross-modal Transfer with Pre-trained Large Language
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
摘要深度学习的最新进展给地震监测带来了革命性变化,但开发一个能在多个复杂任务中表现出色的基础模型仍然充满挑战,尤其是在处理信号退化或数据稀缺的情况时。本文提出SeisMoLLM,这是首个利用跨模态迁移进行地震监测的基础模型,它无需在地震数据集上进行直接预训练,就能充分发挥大规模预训练大语言模型的强大能力。通过精心设计的波形标记化处理和对预训练GPT-2模型的微调,SeisMoLLM在DiTing和
- 二手劳力士价格暴跌,跌幅比房价还高,昔日的保值神器,怎么一下子就跌了这么多?
日记成书
热门实事学习
二手劳力士价格暴跌的现象,是多重因素共同作用的结果,涉及市场供需失衡、品牌策略调整、经济环境变化以及消费观念转型等。以下从核心原因、市场影响和未来趋势三个维度展开分析:一、暴跌的核心原因供需失衡:稀缺性泡沫破裂劳力士曾通过严格控制年产量(过去十年约100万只/年)和配货规则维持稀缺性,但2022年增产至124万只后,专卖店提货周期从数年缩短至60天,直接刺破了“稀缺神话”。同时,劳力士推出官方认证
- AI人才争夺战升级、算力投资加码与阿里千亿AI豪赌:重塑未来科技格局的三大核心战场
meisongqing
人工智能科技
2025年3月,全球科技领域最引人注目的动态,莫过于AI人才争夺的白热化、算力投资的规模化竞赛,以及阿里巴巴以3800亿元重注押宝AI的豪赌。这三股力量交织,不仅推动了中国科技产业的深度变革,更预示着一场全球技术话语权的重新洗牌。---一、AI人才争夺战:从“高薪挖角”到“生态争夺”全球AI产业的爆发式增长,使得顶尖人才成为最稀缺的资源。据预测,到2030年,中国AI人才缺口将达400万,而美国A
- NFT热潮下的安全隐患:SSL证书如何守护数字资产?
ssl证书
NFT热潮下的安全隐患:SSL证书如何守护数字资产?近年来,NFT(非同质化代币)以其独特性和稀缺性迅速走红,成为数字艺术、游戏、收藏品等领域的热门话题。然而,随着NFT市场的火爆,安全问题也日益凸显:黑客攻击、钓鱼网站、数据泄露等事件频发,给数字资产的安全带来了巨大威胁。在这样的背景下,SSL证书作为网络安全的基础设施,正在为NFT平台和用户提供关键的安全保障。1.NFT热潮背后的安全隐患·黑客
- 语义检索-BAAI Embedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性
汀、人工智能
LLM工业级落地实践embeddinglangchain人工智能智能问答RAG检索增强生成大模型
语义检索-BAAIEmbedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性语义向量模型(EmbeddingModel)已经被广泛应用于搜索、推荐、数据挖掘等重要领域。在大模型时代,它更是用于解决幻觉问题、知识时效问题、超长文本问题等各种大模型本身制约或不足的必要技术。然而,当前中文世界的高质量语义向量模型仍比较稀缺,且很少开源。为加快解决大模型
- 明明做了很多事,却总不被领导提拔?怎样避免成为“职场老黄牛”?
晏小北
职场和发展经验分享求职招聘经济
很多人,受到毒教育影响,只知道埋头苦干,勤能补拙。残酷的真相是,方向反了,越勤奋,错得越离谱。南辕北辙,一之为甚,其可再乎?图片来源:网络领导让你干活,本质上,是一个委托-代理问题,他不能事必躬亲,所以将这个活儿委托给你。但,如果对所有活儿都来者不拒,注定会沦为工具人。活儿也分三六九等,识别哪些是优质活儿,哪些是劣质活儿,比埋头苦干更重要。如何评判一个活儿的优质程度?有两个标准,自由裁量权和稀缺度
- 征程 6 工具链 BEVPoolV2 算子使用教程 1 - BEVPoolV2 算子详解
算法自动驾驶
1.引言当前,地平线征程6工具链已经全面支持了BEVPoolingV2算子,并与mmdetection3d的实现完成了精准对齐。然而,需要注意的是,此算子因其内在的复杂性以及相关使用示例的稀缺,致使部分用户在实际运用过程中遭遇了与预期不符的诸多问题。在这样的背景下,本文首先会对BEVPoolingV2的实现进行全方位、细致入微的剖析讲解,,让复杂的原理变得清晰易懂。随后,还会通过代表性的示例,来进
- 什么是预训练?
卡卡大怪兽
自然语言处理
一、介绍预训练模型诞生背景:对于某种特殊任务只存在少量的相关训练数据,以至于模型不能从中学习到有用的规律(标注资源稀缺,无大数据支持)举例:想对一批法律领域的文件进行关系抽取,就需要投入大量的精力(意味着时间和金钱的大量投入)在法律领域的文件中进行关系抽取的标注,然后将标注好的数据“喂”给模型进行训练。但是即使是标注了几百万条这样的数据(实际情况中,在一个领域内标注几百万条几乎不可能,因为成本非常
- 【AI论文】SongGen:用于文本到歌曲生成的单阶段自回归Transformer模型
东临碣石82
人工智能回归transformer
摘要:文本到歌曲生成任务,即根据文本输入创作歌词和伴奏,由于领域复杂性和数据稀缺性,面临着重大挑战。现有方法通常采用多阶段生成流程,导致训练和推理过程繁琐。在本文中,我们提出了SongGen,一个完全开源的单阶段自回归Transformer模型,专为可控歌曲生成而设计。该模型能够对多种音乐属性进行细粒度控制,包括歌词、乐器描述、流派、情绪和音色等文本信息,同时还提供可选的三秒参考片段用于声音克隆。
- 深度学习模型优化与医疗诊断应用突破
智能计算研究中心
其他
内容概要近年来,深度学习技术的迭代演进正在重塑医疗诊断领域的实践范式。随着PyTorch与TensorFlow等开源框架的持续优化,模型开发效率显著提升,为医疗场景下的复杂数据处理提供了技术基座。当前研究聚焦于迁移学习与模型压缩算法的协同创新,通过复用预训练模型的泛化能力与降低计算负载,有效解决了医疗数据样本稀缺与硬件资源受限的痛点问题。与此同时,自适应学习机制通过动态调整网络参数更新策略,在病理
- 最全中文对话数据集(不定期更新)
数据猎手小k
人工智能大数据
随着人工智能技术的发展,自然语言处理(NLP)领域中的对话系统逐渐成为研究的热点。为了提升对话系统的性能,需要大量的高质量对话数据来训练和优化模型。然而,中文对话数据相对于英文来说较为稀缺,且质量参差不齐,这限制了中文对话系统的发展。因此,构建大规模、高质量的中文对话数据集成为了一个迫切的需求。一、研究意义1、推动中文NLP发展:大规模高质量的中文对话数据集能够为中文自然语言处理领域的研究提供基础
- 论文解读(全头皮重建方向):3DCMM
FLOWVERSE
3d3D人头补全
从面部到完整头部:3DCMM的技术原理解析引言在计算机图形学和人体工学领域,3D头部模型的需求日益增加。无论是虚拟化身的创建还是头盔的个性化设计,仅有面部模型往往不足以满足要求,完整的头部几何(包括头皮)才是关键。传统的3D可变形模型(3DMM)多集中于面部重建,头皮区域因数据稀缺和技术限制常被忽略。2022年发表于VRCAI’22的论文《3DCMM:3DComprehensiveMorphabl
- DeepSeek使用手册(清华大学版).pdf
2501_90739749
pdf
「DeepSeek资料大全」资源链接:https://pan.quark.cn/s/1352425b0645我们不会被AI替代但善用AI的人会替代我们!不懂AI的HR会被替代掌握AI技能的HR将成稀缺人才!AI不是选修课而是HR生存与发展的必修技能!今天小编的免费福利是《DeepSeek使用手册(清华大学版).pdf》103页PDF资料详尽的操作指南帮你用好AI!
- MobPush智能推送系统的用户行为分析:驱动精准运营的核心引擎
数据库
MobPush智能推送系统的用户行为分析:驱动精准运营的核心引擎在移动应用竞争白热化的今天,用户注意力成为最稀缺的资源。APP企业纷纷引入MobPush智能推送系统,其核心价值在于通过用户行为分析实现精准触达。这种技术不仅改变了传统"广撒网"式的推送策略,更成为用户留存和商业转化的关键武器。本文将从实践效果与典型案例维度,解析MobPush智能推送系统如何重构用户运营逻辑。实践效果:从经验驱动到数
- 仅用10张图片,AI就能学会识别万物?多模态小样本学习颠覆传统!
沃恩智慧
人工智能深度学习人工智能学习深度学习
小样本学习与多模态结合是当前人工智能领域的热门研究方向,旨在通过结合多模态数据(如视觉、语言、音频等)来提高模型在数据稀缺情况下的学习效率和性能。例如,ZS-DeconvNet方法在Nature上发表,展示了其在极低训练数据需求下,将图像分辨率提升超过1.5倍衍射极限的能力。此外,CPE-CLIP和MMFL等方法通过利用预训练模型和冻结的大规模视觉语言模型,实现了跨会话的迁移学习和快速适应新样本。
- 城电科技|海岛为什么要用智能光伏太阳花
城电科技
科技
海岛为什么要用智能光伏太阳花?海岛选用智能光伏太阳花的原因有:1、占地与地域优势:海岛土地资源相对稀缺,光伏太阳花占地面积小的特点,能有效节省海岛宝贵的土地。并且其安装不受地域限制,无论是在海岛的平坦海岸,还是地形复杂的山地,都能因地制宜地进行安装,充分利用海岛的空间资源来获取清洁能源。2、安装与成本优势:在海岛环境下,人力运输和作业难度较大。光伏太阳花安装便捷,大大降低了人工成本投入。同时,其节
- 具身智能训练新思路!将生成视频用于训练机器人
天机️灵韵
具身智能人工智能具身智能
将生成视频用于训练具身智能(EmbodiedAI)确实是近年来备受关注的前沿方向,这一思路通过结合生成式AI(如扩散模型、神经辐射场等)与机器人学习,为解决真实世界数据稀缺、训练成本高等问题提供了新可能。以下从技术逻辑、潜在优势、挑战及案例方向展开分析:一、技术逻辑:如何用生成视频训练机器人?生成式AI构建虚拟环境利用扩散模型(如Sora、StableVideoDiffusion)或3D生成技术(
- C语言中的共用体(Union):嵌入式开发中的节省内存利器
TNT_JQR
c语言嵌入式硬件单片机
在进行嵌入式开发时,我们常常会听到这样一句话:“内存就是金钱。”在嵌入式系统中,内存资源通常是非常稀缺的,尤其是在一些微控制器(如STM32、ESP32等)的开发中,我们需要尽可能地精打细算,优化内存的使用。那么,你是否知道在C语言中有一个超实用的工具,可以帮助我们在程序中节省内存?它就是我想要介绍的主角:共用体(Union)。一、什么是共用体?在C语言中,共用体(Union)是一种特殊的数据结构
- 数据要素在金融领域如何应用?
数据
随着数字经济的蓬勃发展,数据已成为新时代的关键生产要素,与土地、劳动力、资本和技术等传统生产要素并驾齐驱,共同推动社会经济的进步。数据要素的独特性质,如规模报酬递增、非竞争性、低成本复用、非稀缺性和非消耗性,使其在金融服务领域展现出巨大的潜力和价值。数据要素究竟要如何在金融领域应用?一、数据要素的特征数据要素与传统生产要素相比,具有显著的差异化特征。首先,数据要素具有规模报酬递增的特性,即随着数据
- 了解比特币
lpl还在学习的路上
区块链
比特币(Bitcoin,简称BTC)是世界上第一种去中心化的数字货币,由中本聪(SatoshiNakamoto)在2008年提出,并于2009年正式上线。比特币的核心特点是去中心化、匿名性和稀缺性,它不依赖任何中央机构发行或管理,而是通过区块链技术和密码学确保其安全性和可信度。以下是关于比特币的详细介绍:1.比特币的核心特点去中心化:比特币没有中央发行机构或管理机构,所有交易由全球节点共同维护。匿
- YOLOv10改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测
Limiiiing
YOLOv10改进专栏YOLO深度学习计算机视觉目标检测
一、本文介绍本文将HS-FPN结构融入YOLOv10以优化目标检测网络模型。HS-FPN借助通道注意力机制及独特的多尺度融合策略,有效应对目标尺寸差异及特征稀缺问题。在YOLOv10中应用HS-FPN时,其利用高级特征筛选低级特征,增强特征表达,助力模型精准定位和识别目标,减少因尺度变化及特征不足导致的检测误差,显著提升YOLOv10在各项检测任务中的准确性与稳定性。专栏目录:YOLOv10改进目
- 2025毕设springboot 猫舍管理系统分析与设计论文+源码
zhihao508
课程设计springboot后端
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容选题背景关于猫舍管理系统的研究,现有研究主要集中在宠物店的信息化管理、宠物医院的业务流程优化以及宠物寄养服务的数字化升级等方面。然而,专门针对猫舍管理系统的分析与设计研究相对较少,尤其是针对猫咪养殖、销售、预约及品种管理等综合功能的系统化研究更为稀缺。当前,许多猫舍仍采用传统的手工管理
- 如何利用模板为您的聊天机器人自动生成反馈
FADxafs
机器人windowspython
在人工智能快速发展的今天,聊天机器人是应用大型语言模型(LLM)的最常见接口之一。尽管如此,许多聊天机器人的质量参差不齐,这使得不断完善和发展显得尤为重要。传统的用户反馈机制往往无法有效捕捉用户体验,而这种反馈的稀缺也阻碍了对聊天机器人的进一步优化。本文旨在介绍一种无需明确用户反馈即可评估聊天机器人的方法。技术背景介绍在构建和改进聊天机器人的过程中,用户反馈如“赞”或“踩”往往是稀缺的资源。即使在
- 迁移学习与RBF神经网络
fanxbl957
人工智能理论与实践迁移学习神经网络人工智能
迁移学习与RBF神经网络一、引言在机器学习和深度学习领域,迁移学习和神经网络都是备受关注的重要技术。迁移学习旨在将从一个或多个源任务中学习到的知识应用到目标任务中,以加快目标任务的学习过程,提高学习效果,尤其在数据稀缺或训练资源有限的情况下展现出显著优势。而RBF(径向基函数)神经网络作为一种经典的神经网络结构,以其独特的函数逼近能力和良好的局部逼近特性,在众多领域取得了出色的性能表现。将迁移学习
- 【视觉惯性SLAM:十五、ORB-SLAM3中的IMU预积分】
KeyPan
视觉惯性SLAM计算机视觉视觉检测
15.1视觉惯性紧耦合15.1.1视觉惯性紧耦合的重要性视觉惯性紧耦合(Visual-InertialTightCoupling)在ORB-SLAM3中的作用不可替代,是实现高鲁棒性和高精度定位的核心技术。单一的视觉SLAM主要依赖于图像特征进行定位和建图,这种方法虽然能够在许多环境中获得良好的效果,但其鲁棒性容易受到动态变化、光照条件恶化以及环境特征稀缺等因素的限制。例如,昏暗场景或快速运动可能
- 计算机毕业设计springboot+vue基本微信小程序的云宠物小程序-宠物领养
QQ1061662411
小程序课程设计springboot
项目介绍当今科技发展迅速,交通环境也变得越来越复杂。人们的出行方式变得多元化,这给视障人士带来了一定的困扰。而导盲犬可以帮助视障人士外出行走,提高他们的生活质量。在我国,导盲犬的数量远远少于视障人士的数量。由于导盲犬的训练周期长、成本高、淘汰率也高,使得现有的培训基地面临经费短缺、训导师稀缺等问题。导盲犬作为残疾人福利事业的重要组成部分,不仅反映一个国家社会福利事业发展的程度,更能够唤起整个社会对
- 11讲 一次只做一件事
其乐融蓉蓉
时间是一个人最稀缺的资源。巴菲特到比尔盖茨家去做客,有人就问道他们成功的秘诀是什么,他们都没有直接回答,而是在纸上写下了答案,他们的答案都是一致的,五个字母focus。专注。专注去做一件事。每一次只做一件事。我就经常有这样的经验,每次就像叶老师说的边工作边听音乐或者边看电视边聊微信,边刷淘宝。这样会导致工作效率极低。拉长工作时间,让我经常在下班时间没有完成工作,所以很焦虑。有一个办法能让我们去专注
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1