Flink12:Flink流处理Api之sink

流处理基本步骤:


sink

Flink没有类似于spark中foreach方法,让用户进行迭代的操作。虽有对外的输出操作都要利用Sink完成。最后通过类似如下方式完成整个任务最终输出操作:
stream.addSink(new MySink(xxxx))
官方提供了一部分的框架的sink。除此以外,需要用户自定义实现sink。



1.kafka作为sink的实践

1.1. pom.xml添加配置



    org.apache.flink
    flink-connector-kafka-0.11_2.11
    1.7.2

1.2. 主函数中的sink开发

package com.atguigu.apitest.sinktest

import java.util.Properties

import com.atguigu.apitest.SensorReading
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011.Semantic
import org.apache.flink.streaming.connectors.kafka.{FlinkKafkaConsumer011, FlinkKafkaProducer011}

object KafkaSinkTest {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    // source
//    val inputStream = env.readTextFile("D:\\Projects\\BigData\\FlinkTutorial\\src\\main\\resources\\sensor.txt")
    val properties = new Properties()
    properties.setProperty("bootstrap.servers", "localhost:9092")
    properties.setProperty("group.id", "consumer-group")
    properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    properties.setProperty("auto.offset.reset", "latest")

    val inputStream = env.addSource(new FlinkKafkaConsumer011[String]("sensor", new SimpleStringSchema(), properties))

    // Transform操作

    val dataStream = inputStream
      .map(
        data => {
          val dataArray = data.split(",")
          SensorReading( dataArray(0).trim, dataArray(1).trim.toLong, dataArray(2).trim.toDouble ).toString  // 转成String方便序列化输出
        }
      )

    // sink
    dataStream.addSink( new FlinkKafkaProducer011[String]( "sinkTest", new SimpleStringSchema(), properties) )
    dataStream.print()

    env.execute("kafka sink test")
  }
}

1.3. 启动kafka服务:
]# ./bin/kafka-server-start.sh config/server.properties



1.4. 启动kafka producer发送数据:
]# ./bin/kafka-console-producer.sh --broker-list localhost:9092 --topic senser


1.5 启动kafka consumer接收数据:
]# ./bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic senser --from-beginning



1.6 测试,运行代码,在producer输入:
1,2,3
4,5,6
观察运行日志:

"D:\develop\jdk1.8 64Bit\tools\bin\java.exe" "-javaagent:D:\develop\IntelliJ IDEA Community Edition 2019.3.1\lib\idea_rt.jar=57958:D:\develop\IntelliJ IDEA Community Edition 2019.3.1\bin" -Dfile.encoding=UTF-8 -classpath "D:\develop\jdk1.8 64Bit\tools\jre\lib\charsets.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\deploy.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\ext\access-bridge-64.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\ext\cldrdata.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\ext\dnsns.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\ext\jaccess.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\ext\jfxrt.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\ext\localedata.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\ext\nashorn.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\ext\sunec.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\ext\sunjce_provider.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\ext\sunmscapi.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\ext\sunpkcs11.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\ext\zipfs.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\javaws.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\jce.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\jfr.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\jfxswt.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\jsse.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\management-agent.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\plugin.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\resources.jar;D:\develop\jdk1.8 64Bit\tools\jre\lib\rt.jar;D:\Code\flink-study\target\classes;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-scala_2.11\1.7.2\flink-scala_2.11-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-core\1.7.2\flink-core-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-annotations\1.7.2\flink-annotations-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-metrics-core\1.7.2\flink-metrics-core-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\commons\commons-lang3\3.3.2\commons-lang3-3.3.2.jar;C:\Users\Administrator\.m2\repository\com\esotericsoftware\kryo\kryo\2.24.0\kryo-2.24.0.jar;C:\Users\Administrator\.m2\repository\com\esotericsoftware\minlog\minlog\1.2\minlog-1.2.jar;C:\Users\Administrator\.m2\repository\org\objenesis\objenesis\2.1\objenesis-2.1.jar;C:\Users\Administrator\.m2\repository\commons-collections\commons-collections\3.2.2\commons-collections-3.2.2.jar;C:\Users\Administrator\.m2\repository\org\apache\commons\commons-compress\1.18\commons-compress-1.18.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-java\1.7.2\flink-java-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\commons\commons-math3\3.5\commons-math3-3.5.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-shaded-asm\5.0.4-5.0\flink-shaded-asm-5.0.4-5.0.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-shaded-asm-6\6.2.1-5.0\flink-shaded-asm-6-6.2.1-5.0.jar;C:\Users\Administrator\.m2\repository\org\scala-lang\scala-reflect\2.11.12\scala-reflect-2.11.12.jar;C:\Users\Administrator\.m2\repository\org\scala-lang\scala-library\2.11.12\scala-library-2.11.12.jar;C:\Users\Administrator\.m2\repository\org\scala-lang\scala-compiler\2.11.12\scala-compiler-2.11.12.jar;C:\Users\Administrator\.m2\repository\org\scala-lang\modules\scala-xml_2.11\1.0.5\scala-xml_2.11-1.0.5.jar;C:\Users\Administrator\.m2\repository\org\scala-lang\modules\scala-parser-combinators_2.11\1.0.4\scala-parser-combinators_2.11-1.0.4.jar;C:\Users\Administrator\.m2\repository\org\slf4j\slf4j-api\1.7.15\slf4j-api-1.7.15.jar;C:\Users\Administrator\.m2\repository\com\google\code\findbugs\jsr305\1.3.9\jsr305-1.3.9.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\force-shading\1.7.2\force-shading-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-streaming-scala_2.11\1.7.2\flink-streaming-scala_2.11-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-streaming-java_2.11\1.7.2\flink-streaming-java_2.11-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-runtime_2.11\1.7.2\flink-runtime_2.11-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-queryable-state-client-java_2.11\1.7.2\flink-queryable-state-client-java_2.11-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-hadoop-fs\1.7.2\flink-hadoop-fs-1.7.2.jar;C:\Users\Administrator\.m2\repository\commons-io\commons-io\2.4\commons-io-2.4.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-shaded-netty\4.1.24.Final-5.0\flink-shaded-netty-4.1.24.Final-5.0.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-shaded-jackson\2.7.9-5.0\flink-shaded-jackson-2.7.9-5.0.jar;C:\Users\Administrator\.m2\repository\commons-cli\commons-cli\1.3.1\commons-cli-1.3.1.jar;C:\Users\Administrator\.m2\repository\org\javassist\javassist\3.19.0-GA\javassist-3.19.0-GA.jar;C:\Users\Administrator\.m2\repository\com\typesafe\akka\akka-actor_2.11\2.4.20\akka-actor_2.11-2.4.20.jar;C:\Users\Administrator\.m2\repository\com\typesafe\config\1.3.0\config-1.3.0.jar;C:\Users\Administrator\.m2\repository\org\scala-lang\modules\scala-java8-compat_2.11\0.7.0\scala-java8-compat_2.11-0.7.0.jar;C:\Users\Administrator\.m2\repository\com\typesafe\akka\akka-stream_2.11\2.4.20\akka-stream_2.11-2.4.20.jar;C:\Users\Administrator\.m2\repository\org\reactivestreams\reactive-streams\1.0.0\reactive-streams-1.0.0.jar;C:\Users\Administrator\.m2\repository\com\typesafe\ssl-config-core_2.11\0.2.1\ssl-config-core_2.11-0.2.1.jar;C:\Users\Administrator\.m2\repository\com\typesafe\akka\akka-protobuf_2.11\2.4.20\akka-protobuf_2.11-2.4.20.jar;C:\Users\Administrator\.m2\repository\com\typesafe\akka\akka-slf4j_2.11\2.4.20\akka-slf4j_2.11-2.4.20.jar;C:\Users\Administrator\.m2\repository\org\clapper\grizzled-slf4j_2.11\1.3.2\grizzled-slf4j_2.11-1.3.2.jar;C:\Users\Administrator\.m2\repository\com\github\scopt\scopt_2.11\3.5.0\scopt_2.11-3.5.0.jar;C:\Users\Administrator\.m2\repository\com\twitter\chill_2.11\0.7.6\chill_2.11-0.7.6.jar;C:\Users\Administrator\.m2\repository\com\twitter\chill-java\0.7.6\chill-java-0.7.6.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-clients_2.11\1.7.2\flink-clients_2.11-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-optimizer_2.11\1.7.2\flink-optimizer_2.11-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-shaded-guava\18.0-5.0\flink-shaded-guava-18.0-5.0.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-connector-kafka-0.11_2.11\1.7.2\flink-connector-kafka-0.11_2.11-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-connector-kafka-0.10_2.11\1.7.2\flink-connector-kafka-0.10_2.11-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-connector-kafka-0.9_2.11\1.7.2\flink-connector-kafka-0.9_2.11-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\flink\flink-connector-kafka-base_2.11\1.7.2\flink-connector-kafka-base_2.11-1.7.2.jar;C:\Users\Administrator\.m2\repository\org\apache\kafka\kafka-clients\0.11.0.2\kafka-clients-0.11.0.2.jar;C:\Users\Administrator\.m2\repository\net\jpountz\lz4\lz4\1.3.0\lz4-1.3.0.jar;C:\Users\Administrator\.m2\repository\org\xerial\snappy\snappy-java\1.1.2.6\snappy-java-1.1.2.6.jar" com.sink.KafkaSinkTest
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
SensorReading(1,2,3.0)
SensorReading(4,5,6.0)

观察 kafka consumer输出结果:



至此,完成kafka作为sink和source的实践。

2. Redis作为sink的实践

2.1. pom.xml配置中添加



    org.apache.bahir
    flink-connector-redis_2.11
    1.0

2.2. 主函数开发

package com.sink

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.redis.RedisSink
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig
import org.apache.flink.streaming.connectors.redis.common.mapper.{RedisCommand, RedisCommandDescription, RedisMapper}

// 定义样例类,传感器id,时间戳,温度
case class SensorReading(id:String,timestamp:Long,temperature:Double)

class MyRedisMapper() extends RedisMapper[SensorReading]{
  // 定义保存数据到redis的命令
  override def getCommandDescription:RedisCommandDescription={
    // 把传感器id和温度值保存成哈希表 HSET key field value
    new RedisCommandDescription(RedisCommand.HSET,"sensor_temperature")
  }
  // 定义保存到redis的key
  override def getKeyFromData(t: SensorReading): String = t.id
  // 定义保存到redis的value
  override def getValueFromData(t: SensorReading): String = t.temperature.toString
}
object RedisSinkTest {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)
    val  inputStream = env.readTextFile("data/sensor.txt");
    val dataStream =inputStream.map(x=>{
      val dataArray = x.split(",")
      SensorReading(dataArray(0),dataArray(1).toLong,dataArray(2).toDouble)
    })

    val conf = new FlinkJedisPoolConfig.Builder()
      .setHost("localhost")
      .setPort(6379)
      .build()

    //sink
    dataStream.addSink(new RedisSink(conf,new MyRedisMapper()))
    env.execute()
  }

}

SensorReading类在前面已经定义过,就不给出定义了,如没定义,加上以下代码:

// 定义样例类,传感器id,时间戳,温度
case class SensorReading(id:String,timestamp:Long,temperature:Double)

2.3 启动redis服务端和客户端
2.4 运行代码,没有报错,查看redis结果:



从结果看到,数据被插入成功。至此,作为redis的sink开发完成。

3. Elasticsearch作为sink的实践

3.1. pom.xml配置中添加


    org.apache.flink
    flink-connector-elasticsearch6_2.11
    1.7.2

3.2. 在主函数开发

package com.sink

import java.util

import org.apache.flink.api.common.functions.RuntimeContext
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.elasticsearch.{ElasticsearchSinkFunction, RequestIndexer}
import org.apache.flink.streaming.connectors.elasticsearch6.ElasticsearchSink
import org.apache.http.HttpHost
import org.elasticsearch.client.Requests

object EsSinkTest {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    // source
    val inputStream = env.readTextFile("data/sensor.txt")

    // transform
    val dataStream = inputStream
      .map(
        data => {
          val dataArray = data.split(",")
          SensorReading( dataArray(0).trim, dataArray(1).trim.toLong, dataArray(2).trim.toDouble )
        }
      )

    val httpHosts = new util.ArrayList[HttpHost]()
    httpHosts.add(new HttpHost("localhost", 9200))

    // 创建一个esSink 的builder
    val esSinkBuilder = new ElasticsearchSink.Builder[SensorReading](
      httpHosts,
      new ElasticsearchSinkFunction[SensorReading] {
        override def process(element: SensorReading, ctx: RuntimeContext, indexer: RequestIndexer): Unit = {
          println("saving data: " + element)
          // 包装成一个Map或者JsonObject
          val json = new util.HashMap[String, String]()
          json.put("sensor_id", element.id)
          json.put("temperature", element.temperature.toString)
          json.put("ts", element.timestamp.toString)

          // 创建index request,准备发送数据
          val indexRequest = Requests.indexRequest()
            .index("sensor")
            .`type`("readingdata")
            .source(json)

          // 利用index发送请求,写入数据
          indexer.add(indexRequest)
          println("data saved.")
        }
      }
    )

    // sink
    dataStream.addSink( esSinkBuilder.build() )

    env.execute("es sink test")
  }
}

4. JDBC 自定义sink实践

4.1. pom.xml配置中添加



    mysql
    mysql-connector-java
    5.1.44

4.2. 主函数开发

package com.sink
import java.sql.{Connection, DriverManager, PreparedStatement}

import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

class MyJdbcSink() extends  RichSinkFunction[SensorReading]{
  // 定义sql连接、预编译器
  var conn: Connection = _
  var insertStmt: PreparedStatement = _
  var updateStmt: PreparedStatement = _

  //初始化,创建连接和预编译语句
  override def open(parameters: Configuration): Unit = {
    super.open(parameters)
    conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/test","root","111111")
    insertStmt = conn.prepareStatement("INSERT INTO temperatures (sensor, temperature) VALUES (?,?)")
    updateStmt = conn.prepareStatement("UPDATE temperatures SET temperature = ? WHERE sensor = ?")
  }
  // 调用连接,执行sql
  override def invoke(value: SensorReading): Unit = {
    // 执行更新语句
    updateStmt.setDouble(1,value.temperature)
    updateStmt.setString(2,value.id)
    updateStmt.execute()
    // 如果update没有查到数据,那么执行插入语句
    if(updateStmt.getUpdateCount==0){
      insertStmt.setString(1,value.id)
      insertStmt.setDouble(2,value.temperature)
      insertStmt.execute()
    }
  }
  // 关闭时做清理工作
  override def close(): Unit = {
    insertStmt.close()
    updateStmt.close()
    conn.close()
  }
}

object JdbcSinkTest {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)
    // source
    val  inputStream = env.readTextFile("data/sensor.txt");
    // transform
    val dataStream =inputStream.map(x=>{
      val dataArray = x.split(",")
      SensorReading(dataArray(0),dataArray(1).toLong,dataArray(2).toDouble)
    })
    // sink
    dataStream.addSink(new MyJdbcSink())
    dataStream.print("jdbc test")
    env.execute()
  }

}

4.3 打开mysql终端,创建表:
mysql> create database test;
Query OK, 1 row affected (0.04 sec)

mysql> use test;
Database changed
mysql> create table temperatures(
-> sensor varchar(20),
-> temperature double);
Query OK, 0 rows affected (0.10 sec)


4.4 运行代码
控制台打印如下:



查看mysql表:



mysql表插入数据成功,至此,mysql作为sink的开发完成。

你可能感兴趣的:(Flink12:Flink流处理Api之sink)