姓名:莫云轲 学号:19020100320 学院:电子工程学院
转载自:https://www.zhihu.com/question/20225262/answer/553968831
【嵌牛导读】:计算机图形学发展前景怎么样,现在研究领域一般都分哪些?
【嵌牛鼻子】:计算机 图形学发展
【嵌牛提问】:计算机图形学发展前景怎么样,现在研究领域一般都分哪些?
【嵌牛正文】:
图形学的核心科学问题是在计算机中有效的表达和处理三维世界的各种属性。
传统的图形学受物理学和数学启发,将三维对象分解为几何、表观、行为或者动态三种属性。其中几何描述三维对象的几何形状;表观描述三维对象的材料光照属性以及材料如何和光相互作用;行为则表达了一个三维对象的动态特性从而决定了对象的运动和其他物体的交互行为。在这个基础上,针对不同对象特性和应用要求的不同,图形学研究中具体的三维对象又可以大致分为物体、人(包括类人的角色character)以及环境三部分。
针对这些三维对象的不同三维信息(几何、表观、行为),我们把图形学的研究方向和技术也可以大致分为三个大类:
一是获取和建模。主要研究如何有效地构建、编辑、处理不同的三维信息在计算机中的表达,以及如何从真实世界中有效地获取相应的三维信息。这既包括三维几何建模和几何处理这一研究方向,也包含材质和光照建模、人体建模、动作捕捉这些研究课题。
二是理解和认知。主要研究如何识别、分析并抽取三维信息中对应的语义和结构信息。这个方向有很多图形学和计算机视觉共同感兴趣的研究课题,如三维物体识别、检索、场景识别、分割以及人体姿态识别跟踪、人脸表情识别跟踪等。
三是模拟和交互。主要研究如何处理和模拟不同三维对象之间的相互作用和交互过程。这既包含流体模拟和物理仿真,也包含绘制、人体动画、人脸动画等方面的研究。
未来,硬件的发展和革新,会不断促进了新的图形技术和应用产生和迭代发展。在这个过程中,图形学也在不断地结合计算机视觉、光学、信号处理与机器学习等学科的最新研究成果,来解决图形学中的研究问题。
随着硬件设备的发展和普及,以及计算机视觉和机器学习技术的进步,图形学的应用场景将得到更大的扩展。面向真实世界,机器人和三维打印将成为新的应用场景。面向虚拟世界、虚拟现实,混合可视媒体将成为新兴的应用场景,带给人们更好的娱乐体验,释放人类的想象力。在真实世界和虚拟世界之间,增强现实将虚拟信息融合进真实世界,并增强人类在真实世界的体验;数字化孪生则产生真实世界在虚拟世界的镜像,方便我们更好地管理规划真实世界。
下面是图形学可能的应用场景,和它们对相关图形学技术的需求。
机器人
随着机械硬件,传感器设备以及人工智能技术的进步,多用途的机器人将逐渐被应用到不同的真实世界场景中,自动化或半自动化地帮助人类完成各种任务。自动驾驶可以被认为是这一场景中一个应用。机器人为了在不断变化的三维场景中完成给定任务,不仅需要实时重建不断变化的三维场景的几何,还需要识别真实场景中的物体的类别和物理特性,从而预测物体的运动并决定自己的运动。同时,机器人自身也需要实时的动态模拟技术来准确地规划和预测自己的运动,和环境中物体进行交互,从而最终完成任务。
三维打印
三维打印硬件的发展使得生产复杂几何形状和不同几何形状的成本显著下降。和传统的减材制造不同,三维打印可以精确地控制三维形体中每个体素的材质构成,从而可以产生更为丰富的设计和功能。为了支持三维打印,图形学技术需要将设计与物理模拟更好地结合在一起,提供一体化的端到端解决方案。通过高效的计算模拟和逆向优化,帮助设计师和制造者快速地设计产品的三维形状和内部材质分布,从而达到所需要的功能。
虚拟现实
虚拟现实技术作为一类新的媒体,提供了全新的沉浸式体验,在教育、游戏等方面具有重要的应用。为了达到更好的虚拟现实体验,我们不仅需要图形学渲染技术的进步,也需要更好的物理模拟技术和交互技术,提供视觉外其他物理特性,如触觉和听觉的建模和实时渲染。更为根本的是,如何更加快速地生成高质量的三维虚拟内容,以及如何在虚拟环境中和不同的虚拟内容进行有效的交互,是虚拟现实应用得以成功和普及的关键。
增强现实
增强现实和混合现实系统通过将虚拟三维内容叠加在真实场景中,从而实现了虚拟信息和真实世界的融合,提高了人们在真实世界的工作效率,提供了个性化的环境和更好的生活体验。某种程度上,可以将增强现实理解为新一代的精确GPS定位系统。它可以提供在场景中的实时精确三维定位和实时的三维地图构建服务。为了实现这一目标,三维场景的实时捕捉建模(包括几何、表观、物理特性和行为),分析和理解将成为这一应用场景背后的核心技术。
数字化孪生
和增强现实将虚拟信息叠加在真实世界相反,数字化孪生尝试建立真实世界在计算机中的虚拟镜像,并实时地记录预测真实世界的所有变化。结合IoT和传感器技术的发展,数字化孪生技术将提供真实环境的完整数字化,从而实现对真实世界的高效信息分析和控制。同时,数字化孪生为将为机器学习技术提供更多的数据和训练环境。为实现这一目标,我们需要研究更加有效的三维建模和捕捉技术,以及实时的物理模拟技术。