ax650使用ax-pipeline进行推理

ax650使用ax-pipeline进行推理

搭建交叉编译环境

  • 拉取ax-pipeline源码及子模块
git clone --recursive https://github.com/AXERA-TECH/ax-pipeline.git
  • 下载sdk
cd ax-pipeline
./download_ax_bsp.sh ax650
cd ax650n_bsp_sdk
wget https://github.com/ZHEQIUSHUI/assets/releases/download/ax650/drm.zip
mkdir third-party
unzip drm.zip -d third-party
cd ..
  • 下载opencv
mkdir 3rdparty
cd 3rdparty
wget https://github.com/ZHEQIUSHUI/assets/releases/download/ax650/libopencv-4.5.5-aarch64.zip
unzip libopencv-4.5.5-aarch64.zip
  • 编译环境
wget https://developer.arm.com/-/media/Files/downloads/gnu-a/9.2-2019.12/binrel/gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu.tar.xz
tar -xvf gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu.tar.xz
export PATH=$PATH:$PWD/gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu/bin/
  • 源码编译
cd ax-pipeline
mkdir build
cd build
cmake -DAXERA_TARGET_CHIP=AX650 -DBSP_MSP_DIR=$PWD/../ax650n_bsp_sdk/msp/out -DOpenCV_DIR=$PWD/../3rdparty/libopencv-4.5.5-aarch64/lib/cmake/opencv4 -DSIPY_BUILD=OFF -DCMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=../toolchains/aarch64-none-linux-gnu.toolchain.cmake -DCMAKE_INSTALL_PREFIX=install ..
make -j12
make install
  • 获得bin文件到开发板上
bin
├── config
│   ├── custom_model.json
│   ├── dinov2.json
│   ├── dinov2_depth.json
│   ├── glpdepth.json
│   ├── ppyoloe.json
│   ├── scrfd.json
│   ├── scrfd_recognition.json
│   ├── yolo_nas.json
│   ├── yolov5_seg.json
│   ├── yolov5s.json
│   ├── yolov5s_face.json
│   ├── yolov5s_face_recognition.json
│   ├── yolov6.json
│   ├── yolov7.json
│   ├── yolov7_face.json
│   ├── yolov8.json
│   ├── yolov8_pose.json
│   └── yolox.json
├── sample_demux_ivps_npu_hdmi_vo
├── sample_demux_ivps_npu_rtsp
├── sample_demux_ivps_npu_rtsp_hdmi_vo
├── sample_multi_demux_ivps_npu_hdmi_vo
├── sample_multi_demux_ivps_npu_multi_rtsp
├── sample_multi_demux_ivps_npu_multi_rtsp_hdmi_vo
├── sample_vin_ivps_npu_hdmi_vo
└── sample_vin_ivps_npu_venc_rtsp
  • 开发板运行

修改yolov5s.json文件
博主的

{
    "MODEL_TYPE": "MT_DET_YOLOV5",
    "MODEL_PATH": "/root/Desktop/install/bin/config/models/yolov5s_hat.axmodel",
    "TRACK_ENABLE": true,
    "STRIDES": [8, 16, 32],
    "ANCHORS": [
        10.0,
        13.0,
        16.0,
        30.0,
        33.0,
        23.0,
        30.0,
        61.0,
        62.0,
        45.0,
        59.0,
        119.0,
        116.0,
        90.0,
        156.0,
        198.0,
        373.0,
        326.0
    ],
    "CLASS_NAMES": [
     	"hat",
        "person"
       
    ],
    "CLASS_NUM": 2,
    "NMS_THRESHOLD": 0.44999998807907104,
    "PROB_THRESHOLD": 0.4000000059604645
}

需要修改标签和标签数量,anchors可以不改,如果你是官方模型pt训练的,然后修改一下模型路径

要显示推理到hdmi上,先杀掉 fb_vo 这个进程
ps aux|grep fb_vo
找到进程号后kill -9 实际pid杀掉即可
将hdmi插入hdmi0(远离网口的那个)
如果需要恢复运行/root/runVoHook.sh即可恢复原样

本例子使用读取视频MP4,调用npu推理到hdmi显示

./sample_demux_ivps_npu_hdmi_vo -p config/yolov5s.json -f test.mp4

开发板运行显示hdmi上的视频:

ax650 检测yolov5s跑到40帧

你可能感兴趣的:(软件使用,深度学习)