bulkloop例程是USB固件开发中的基础例程,通过它我们可以学到很多基础知识,我在这里也利用下午的时间来学习一下bulkloop例程。
bulkloop这个名字就说明了该固件的作用:以bulk型endpoint作为输出和输入端口,让数据"转一圈"。就是在主机端输出一组数据到FX2LP的某一个bulk型endpoint(比如EP2)的缓存中,然后固件将EP2缓存中的数据转移到另一个bulk型endpoint(比如EP6)的缓存中去,当主机端从EP6输入数据的时候,就会发现得到的数据正是之前输出到EP2的数据。
图1 固件工程Keil界面 :
bulkloop工程本身用到的源文件有:fw.c、bulkloop.c、dscr.a51、EZUSB.LIB、USBjmpTb.OBJ。
fw.c:固件框架程序FrameWork,它包含了固件程序的主程序。框架程序使FX2LP固件有一个相对固定的运行模式,这使得开发者能够更清楚在什么地方、什么时候应该干什么。
下面是fw.c文件中的代码和我的注释,其中还有不明白的地方:
//----------------------------------------------------------------------------- // File: fw.c // Contents: Firmware frameworks task dispatcher and device request parser // // $Archive: /USB/Examples/FX2LP/bulkext/fw.c $ // $Date: 3/23/05 2:53p $ // $Revision: 8 $ // // //----------------------------------------------------------------------------- // Copyright (c) 2011, Cypress Semiconductor Corporation All rights reserved //----------------------------------------------------------------------------- #include "..\inc\fx2.h" #include "..\inc\fx2regs.h" // F:包含了FX2LP寄存器、IO端口的地址信息,方便以后引用这些寄存器和端口。 #include "..\inc\syncdly.h" // SYNCDELAY macro F:包含了延时所用到的宏 //----------------------------------------------------------------------------- // Constants //----------------------------------------------------------------------------- #define DELAY_COUNT 0x9248*8L // Delay for 8 sec at 24Mhz, 4 sec at 48 #define _IFREQ 48000 // IFCLK constant for Synchronization Delay #define _CFREQ 48000 // CLKOUT constant for Synchronization Delay //----------------------------------------------------------------------------- // Random Macros //----------------------------------------------------------------------------- #define min(a,b) (((a)<(b))?(a):(b)) #define max(a,b) (((a)>(b))?(a):(b)) //----------------------------------------------------------------------------- // Global Variables //----------------------------------------------------------------------------- volatile BOOL GotSUD; BOOL Rwuen; BOOL Selfpwr; volatile BOOL Sleep; // Sleep mode enable flag WORD pDeviceDscr; // Pointer to Device Descriptor; Descriptors may be moved WORD pDeviceQualDscr; WORD pHighSpeedConfigDscr; WORD pFullSpeedConfigDscr; WORD pConfigDscr; WORD pOtherConfigDscr; WORD pStringDscr; //----------------------------------------------------------------------------- // Prototypes //----------------------------------------------------------------------------- void SetupCommand(void); void TD_Init(void); void TD_Poll(void); BOOL TD_Suspend(void); BOOL TD_Resume(void); BOOL DR_GetDescriptor(void); BOOL DR_SetConfiguration(void); BOOL DR_GetConfiguration(void); BOOL DR_SetInterface(void); BOOL DR_GetInterface(void); BOOL DR_GetStatus(void); BOOL DR_ClearFeature(void); BOOL DR_SetFeature(void); BOOL DR_VendorCmnd(void); // this table is used by the epcs macro const char code EPCS_Offset_Lookup_Table[] = { 0, // EP1OUT 1, // EP1IN 2, // EP2OUT 2, // EP2IN 3, // EP4OUT 3, // EP4IN 4, // EP6OUT 4, // EP6IN 5, // EP8OUT 5, // EP8IN }; // macro for generating the address of an endpoint's control and status register (EPnCS) #define epcs(EP) (EPCS_Offset_Lookup_Table[(EP & 0x7E) | (EP > 128)] + 0xE6A1) //----------------------------------------------------------------------------- // Code //----------------------------------------------------------------------------- // Task dispatcher void main(void) { DWORD i; WORD offset; DWORD DevDescrLen; DWORD j=0; WORD IntDescrAddr; WORD ExtDescrAddr; // Initialize Global States Sleep = FALSE; // Disable sleep mode Rwuen = FALSE; // Disable remote wakeup Selfpwr = FALSE; // Disable self powered GotSUD = FALSE; // Clear "Got setup data" flag // Initialize user device TD_Init(); //F:该函数定义在bulkloop.c文件中,是执行用户意图的初始化函数,比如定义端点和FIFO属性等. // The following section of code is used to relocate the descriptor table. // The frameworks uses SUDPTRH and SUDPTRL to automate the SETUP requests // for descriptors. These registers only work with memory locations // in the EZ-USB internal RAM. Therefore, if the descriptors are located // in external RAM, they must be copied to in internal RAM. // The descriptor table is relocated by the frameworks ONLY if it is found // to be located in external memory. pDeviceDscr = (WORD)&DeviceDscr; //F:DeviceDscr结构体的定义在fw.h文件中,赋值发生在dscr.a51中. 楼下几位情况类似 pDeviceQualDscr = (WORD)&DeviceQualDscr; pHighSpeedConfigDscr = (WORD)&HighSpeedConfigDscr; pFullSpeedConfigDscr = (WORD)&FullSpeedConfigDscr; pStringDscr = (WORD)&StringDscr; // Is the descriptor table in external RAM (> 16Kbytes)? If yes, // then relocate. // Note that this code only checks if the descriptors START in // external RAM. It will not work if the descriptor table spans // internal and external RAM. if ((WORD)&DeviceDscr & 0xC000) //F:检测描述符地址是否在外置存储器中 { // first, relocate the descriptors IntDescrAddr = INTERNAL_DSCR_ADDR; //F: fx.h文件中, #define INTERNAL_DSCR_ADDR 0x0080 // Relocate Descriptors to 0x80 ExtDescrAddr = (WORD)&DeviceDscr; DevDescrLen = (WORD)&UserDscr - (WORD)&DeviceDscr + 2; //F:获得描述符的完整长度,为下面的转移做准备. for (i = 0; i < DevDescrLen; i++) *((BYTE xdata *)IntDescrAddr+i) = *((BYTE xdata *)ExtDescrAddr+i); // update all of the descriptor pointers //F:将描述指针整体指向内部的描述符. pDeviceDscr = IntDescrAddr; offset = (WORD)&DeviceDscr - INTERNAL_DSCR_ADDR; pDeviceQualDscr -= offset; pConfigDscr -= offset; pOtherConfigDscr -= offset; pHighSpeedConfigDscr -= offset; pFullSpeedConfigDscr -= offset; pStringDscr -= offset; } EZUSB_IRQ_ENABLE(); // Enable USB interrupt (INT2) //F:定义在fx.h中, 就是EUSB = 1. EZUSB_ENABLE_RSMIRQ(); // Wake-up interrupt //F:定义在fx.h中, (EICON |= 0x20) INTSETUP |= (bmAV2EN | bmAV4EN); // Enable INT 2 & 4 autovectoring //F:使能INT2和INT4自动指针 USBIE |= bmSUDAV | bmSUTOK | bmSUSP | bmURES | bmHSGRANT; // Enable selected interrupts EA = 1; // Enable 8051 interrupts #ifndef NO_RENUM // Renumerate if necessary. Do this by checking the renum bit. If it // is already set, there is no need to renumerate. The renum bit will // already be set if this firmware was loaded from an eeprom. //F:如果USBCS寄存器的RENUM位是0,USB核响应设备请求,意味着外接存储器中没有现成的固件(0xC2代表有),需要从主机下载固件.当固件被主机下载到USB之后,会将RENUM位置1. if(!(USBCS & bmRENUM)) { EZUSB_Discon(TRUE); // renumerate } #endif // unconditionally re-connect. If we loaded from eeprom we are // disconnected and need to connect. If we just renumerated this // is not necessary but doesn't hurt anything // F:这句话是无条件重新连接的节奏,为什么从EEPROM载入之后需要重新连接? USBCS &=~bmDISCON; //F:时钟控制寄存器& (~0000 0111),后三位都是1,使MCU的MOVX指令速度最慢(9周期),以兼容慢速存储器之类的. CKCON = (CKCON&(~bmSTRETCH)) | FW_STRETCH_VALUE; // Set stretch // clear the Sleep flag. //F:sleep旗标用来表示USB是否阻断中断请求.见bulkloop.c文件中的赋值语句. Sleep = FALSE; // Task Dispatcher //F:任务分配器 while(TRUE) // Main Loop //F:不停循环 { // Poll User Device TD_Poll(); //F:重复调用函数,大家想干什么,就在bulkloop.c文件中定义它吧. // Check for pending SETUP //F:查看有无等待中的控制命令 if(GotSUD) //F:GotSUD旗标一看就像是SUDAV(setup data available) IRQ中断请求的好朋友. 见bulkloop.c中的SUDAV中断响应函数. { SetupCommand(); // Implement setup command \\F:后面有定义. GotSUD = FALSE; // Clear SETUP flag } // check for and handle suspend. // NOTE: Idle mode stops the processor clock. There are only two // ways out of idle mode, the WAKEUP pin, and detection of the USB // resume state on the USB bus. The timers will stop and the // processor will not wake up on any other interrupts. if (Sleep) { if(TD_Suspend()) { Sleep = FALSE; // Clear the "go to sleep" flag. Do it here to prevent any race condition between wakeup and the next sleep. do { EZUSB_Susp(); // Place processor in idle mode. //F:没见到定义??? } while(!Rwuen && EZUSB_EXTWAKEUP()); // above. Must continue to go back into suspend if the host has disabled remote wakeup // *and* the wakeup was caused by the external wakeup pin. // 8051 activity will resume here due to USB bus or Wakeup# pin activity. EZUSB_Resume(); // If source is the Wakeup# pin, signal the host to Resume. //F:没见到定义??? TD_Resume(); //F:函数可自定义,用来在唤醒时执行. } } } } BOOL HighSpeedCapable() { // this function determines if the chip is high-speed capable. // FX2 and FX2LP are high-speed capable. FX1 is not - it does // not have a high-speed transceiver. if (GPCR2 & bmFULLSPEEDONLY) return FALSE; else return TRUE; } // Device request parser //F:设备请求分析器,这里大部分是一些日常工作,但是Vendor request有较大的DIY空间, //有时候用户可以利用自定义的Vendor Request做很多事. void SetupCommand(void) { void *dscr_ptr; switch(SETUPDAT[1]) { case SC_GET_DESCRIPTOR: // *** Get Descriptor if(DR_GetDescriptor()) switch(SETUPDAT[3]) { case GD_DEVICE: // Device SUDPTRH = MSB(pDeviceDscr); SUDPTRL = LSB(pDeviceDscr); break; case GD_DEVICE_QUALIFIER: // Device Qualifier // only retuen a device qualifier if this is a high speed // capable chip. if (HighSpeedCapable()) { SUDPTRH = MSB(pDeviceQualDscr); SUDPTRL = LSB(pDeviceQualDscr); } else { EZUSB_STALL_EP0(); } break; case GD_CONFIGURATION: // Configuration SUDPTRH = MSB(pConfigDscr); SUDPTRL = LSB(pConfigDscr); break; case GD_OTHER_SPEED_CONFIGURATION: // Other Speed Configuration SUDPTRH = MSB(pOtherConfigDscr); SUDPTRL = LSB(pOtherConfigDscr); break; case GD_STRING: // String if(dscr_ptr = (void *)EZUSB_GetStringDscr(SETUPDAT[2])) { SUDPTRH = MSB(dscr_ptr); SUDPTRL = LSB(dscr_ptr); } else EZUSB_STALL_EP0(); // Stall End Point 0 break; default: // Invalid request EZUSB_STALL_EP0(); // Stall End Point 0 } break; case SC_GET_INTERFACE: // *** Get Interface DR_GetInterface(); break; case SC_SET_INTERFACE: // *** Set Interface DR_SetInterface(); break; case SC_SET_CONFIGURATION: // *** Set Configuration DR_SetConfiguration(); break; case SC_GET_CONFIGURATION: // *** Get Configuration DR_GetConfiguration(); break; case SC_GET_STATUS: // *** Get Status if(DR_GetStatus()) switch(SETUPDAT[0]) { case GS_DEVICE: // Device EP0BUF[0] = ((BYTE)Rwuen << 1) | (BYTE)Selfpwr; EP0BUF[1] = 0; EP0BCH = 0; EP0BCL = 2; break; case GS_INTERFACE: // Interface EP0BUF[0] = 0; EP0BUF[1] = 0; EP0BCH = 0; EP0BCL = 2; break; case GS_ENDPOINT: // End Point EP0BUF[0] = *(BYTE xdata *) epcs(SETUPDAT[4]) & bmEPSTALL; EP0BUF[1] = 0; EP0BCH = 0; EP0BCL = 2; break; default: // Invalid Command EZUSB_STALL_EP0(); // Stall End Point 0 } break; case SC_CLEAR_FEATURE: // *** Clear Feature if(DR_ClearFeature()) switch(SETUPDAT[0]) { case FT_DEVICE: // Device if(SETUPDAT[2] == 1) Rwuen = FALSE; // Disable Remote Wakeup else EZUSB_STALL_EP0(); // Stall End Point 0 break; case FT_ENDPOINT: // End Point if(SETUPDAT[2] == 0) { *(BYTE xdata *) epcs(SETUPDAT[4]) &= ~bmEPSTALL; EZUSB_RESET_DATA_TOGGLE( SETUPDAT[4] ); } else EZUSB_STALL_EP0(); // Stall End Point 0 break; } break; case SC_SET_FEATURE: // *** Set Feature if(DR_SetFeature()) switch(SETUPDAT[0]) { case FT_DEVICE: // Device if(SETUPDAT[2] == 1) Rwuen = TRUE; // Enable Remote Wakeup else if(SETUPDAT[2] == 2) // Set Feature Test Mode. The core handles this request. However, it is // necessary for the firmware to complete the handshake phase of the // control transfer before the chip will enter test mode. It is also // necessary for FX2 to be physically disconnected (D+ and D-) // from the host before it will enter test mode. break; else EZUSB_STALL_EP0(); // Stall End Point 0 break; case FT_ENDPOINT: // End Point *(BYTE xdata *) epcs(SETUPDAT[4]) |= bmEPSTALL; break; default: EZUSB_STALL_EP0(); // Stall End Point 0 } break; default: // *** Invalid Command if(DR_VendorCmnd()) EZUSB_STALL_EP0(); // Stall End Point 0 } // Acknowledge handshake phase of device request EP0CS |= bmHSNAK; //F:进入握手阶段 } // Wake-up interrupt handler void resume_isr(void) interrupt WKUP_VECT { EZUSB_CLEAR_RSMIRQ(); }
下面是bulkloop.c文件中的代码和我的注释,其中还有不明白的地方,比如“interrupt 0”:
//----------------------------------------------------------------------------- // File: bulkloop.c // Contents: Hooks required to implement USB peripheral function. // // $Archive: /USB/Examples/FX2LP/bulkloop/bulkloop.c $ // // //----------------------------------------------------------------------------- // Copyright (c) 2011, Cypress Semiconductor Corporation All rights reserved //----------------------------------------------------------------------------- #pragma NOIV // Do not generate interrupt vectors //F:告诉编译器,不要使用默认的中断向量表 #include "..\inc\fx2.h" #include "..\inc\fx2regs.h" #include "..\inc\syncdly.h" // SYNCDELAY macro extern BOOL GotSUD; // Received setup data flag extern BOOL Sleep; extern BOOL Rwuen; extern BOOL Selfpwr; BYTE Configuration; // Current configuration BYTE AlternateSetting; // Alternate settings #define VR_NAKALL_ON 0xD0 //F: 1101 0000 #define VR_NAKALL_OFF 0xD1 //F: 1101 0001 //----------------------------------------------------------------------------- // Task Dispatcher hooks //F:任务分配挂钩 // The following hooks are called by the task dispatcher. //F:挂钩函数是被任务分配器调用的 //----------------------------------------------------------------------------- void TD_Init(void) // Called once at startup { // set the CPU clock to 48MHz CPUCS = ((CPUCS & ~bmCLKSPD) | bmCLKSPD1) ; //F:CLKSPD1=1且CLKSPD0=0 意思是48MHz // set the slave FIFO interface to 48MHz //F:时钟来源定为外部,内部FIFO\GPIF时钟设为48MHz,IFCLK输出端口为三态,IFCLK极性不翻转,同步方式,PE012为端口,ABD端口为端口模式 IFCONFIG |= 0x40; //F: 下面的寄存器的修改之间需要添加同步延时 // Registers which require a synchronization delay, see section 15.14 // FIFORESET FIFOPINPOLAR // INPKTEND OUTPKTEND // EPxBCH:L REVCTL // GPIFTCB3 GPIFTCB2 // GPIFTCB1 GPIFTCB0 // EPxFIFOPFH:L EPxAUTOINLENH:L // EPxFIFOCFG EPxGPIFFLGSEL // PINFLAGSxx EPxFIFOIRQ // EPxFIFOIE GPIFIRQ // GPIFIE GPIFADRH:L // UDMACRCH:L EPxGPIFTRIG // GPIFTRIG // Note: The pre-REVE EPxGPIFTCH/L register are affected, as well... // ...these have been replaced by GPIFTC[B3:B0] registers // default: all endpoints have their VALID bit set // default: TYPE1 = 1 and TYPE0 = 0 --> BULK // default: EP2 and EP4 DIR bits are 0 (OUT direction) // default: EP6 and EP8 DIR bits are 1 (IN direction) // default: EP2, EP4, EP6, and EP8 are double buffered // we are just using the default values, yes this is not necessary... EP1OUTCFG = 0xA0; EP1INCFG = 0xA0; SYNCDELAY; // see TRM section 15.14 EP2CFG = 0xA2; //F:1010 0010意思是:有效,OUT,Bulk,512,0,Double. SYNCDELAY; EP4CFG = 0xA0; //F:1010 0000意思是:有效,OUT,Bulk,512,0,00(4和8端点的末尾两位只能是0,在2和6都是Double情况下,意味着Double). SYNCDELAY; EP6CFG = 0xE2; //F:1110 0010意思是:有效,IN,Bulk,512,0,Double. SYNCDELAY; EP8CFG = 0xE0; //F:1110 0000意思是:有效,OUT,Bulk,512,0,00. // out endpoints do not come up armed //F:输出端点一开始没有被arm. // since the defaults are double buffered we must write dummy byte counts twice //F:因为端点默认是双倍缓冲(512*2),我们必须用无用数据写两次字节计数,用来arm输出端点. SYNCDELAY; EP2BCL = 0x80; // arm EP2OUT by writing byte count w/skip. SYNCDELAY; EP2BCL = 0x80; SYNCDELAY; EP4BCL = 0x80; // arm EP4OUT by writing byte count w/skip. SYNCDELAY; EP4BCL = 0x80; // enable dual autopointer feature //F:使能自动指针 AUTOPTRSETUP |= 0x01; } void TD_Poll(void) // Called repeatedly while the device is idle //F:重复调用 { WORD i; WORD count; if(!(EP2468STAT & bmEP2EMPTY)) //F:如果EP2的buff不空.EP2468STAT中的各个位其实就是EPxCS中的F和E位,标识满\空. { // check EP2 EMPTY(busy) bit in EP2468STAT (SFR), core set's this bit when FIFO is empty if(!(EP2468STAT & bmEP6FULL)) //F:如果EP6的buff不满. { // check EP6 FULL(busy) bit in EP2468STAT (SFR), core set's this bit when FIFO is full APTR1H = MSB( &EP2FIFOBUF ); //F:自动指针1指向EP2的buffer APTR1L = LSB( &EP2FIFOBUF ); AUTOPTRH2 = MSB( &EP6FIFOBUF ); //F:自动指针2指向EP6的buffer AUTOPTRL2 = LSB( &EP6FIFOBUF ); count = (EP2BCH << 8) + EP2BCL; //F:计算EP2有多少字节 // loop EP2OUT buffer data to EP6IN for( i = 0x0000; i < count; i++ ) { // setup to transfer EP2OUT buffer to EP6IN buffer using AUTOPOINTER(s) // F:利用自动指针进行EP2和EP6之间的数据转移 EXTAUTODAT2 = EXTAUTODAT1; // F:自动指针1指向的数据到自动指针2指向的空间 } EP6BCH = EP2BCH; //F:宝贝数据长度到EP6的计数,准备接下来的IN操作 SYNCDELAY; EP6BCL = EP2BCL; // arm EP6IN SYNCDELAY; EP2BCL = 0x80; // re(arm) EP2OUT } } if(!(EP2468STAT & bmEP4EMPTY)) { // check EP4 EMPTY(busy) bit in EP2468STAT (SFR), core set's this bit when FIFO is empty if(!(EP2468STAT & bmEP8FULL)) { // check EP8 FULL(busy) bit in EP2468STAT (SFR), core set's this bit when FIFO is full APTR1H = MSB( &EP4FIFOBUF ); APTR1L = LSB( &EP4FIFOBUF ); AUTOPTRH2 = MSB( &EP8FIFOBUF ); AUTOPTRL2 = LSB( &EP8FIFOBUF ); count = (EP4BCH << 8) + EP4BCL; // loop EP4OUT buffer data to EP8IN for( i = 0x0000; i < count; i++ ) { // setup to transfer EP4OUT buffer to EP8IN buffer using AUTOPOINTER(s) EXTAUTODAT2 = EXTAUTODAT1; } EP8BCH = EP4BCH; SYNCDELAY; EP8BCL = EP4BCL; // arm EP8IN SYNCDELAY; EP4BCL = 0x80; // re(arm) EP4OUT } } } BOOL TD_Suspend(void) // Called before the device goes into suspend mode 可自定义 { return(TRUE); } BOOL TD_Resume(void) // Called after the device resumes 可自定义 { return(TRUE); } //----------------------------------------------------------------------------- // Device Request hooks 设备请求执行函数,大多数可自定义 // The following hooks are called by the end point 0 device request parser. //----------------------------------------------------------------------------- BOOL DR_GetDescriptor(void) { return(TRUE); } BOOL DR_SetConfiguration(void) // Called when a Set Configuration command is received { Configuration = SETUPDAT[2]; //F:Configuration这个变量是哪里定义的?还是编译器内部定义的?如何与描述符表联系在一起??? return(TRUE); // Handled by user code } BOOL DR_GetConfiguration(void) // Called when a Get Configuration command is received { EP0BUF[0] = Configuration; EP0BCH = 0; EP0BCL = 1; //F: arm EP0 return(TRUE); // Handled by user code } BOOL DR_SetInterface(void) // Called when a Set Interface command is received { AlternateSetting = SETUPDAT[2]; return(TRUE); // Handled by user code } BOOL DR_GetInterface(void) // Called when a Set Interface command is received { EP0BUF[0] = AlternateSetting; EP0BCH = 0; EP0BCL = 1; return(TRUE); // Handled by user code } BOOL DR_GetStatus(void) { return(TRUE); } BOOL DR_ClearFeature(void) { return(TRUE); } BOOL DR_SetFeature(void) { return(TRUE); } BOOL DR_VendorCmnd(void) //F:生产商请求 { BYTE tmp; switch (SETUPDAT[1]) { case VR_NAKALL_ON: //F:NAK所有transfer请求 tmp =FIFORESET; //F:为什么不直接 FIFORESET|=bmNAKALL ??? tmp |= bmNAKALL; SYNCDELAY; FIFORESET = tmp; //F:这样费周折是因为FIFORESET不可以按位访问吗??? break; case VR_NAKALL_OFF: tmp = FIFORESET; tmp &= ~bmNAKALL; SYNCDELAY; FIFORESET = tmp; break; default: return(TRUE); } return(FALSE); } //----------------------------------------------------------------------------- // USB Interrupt Handlers // The following functions are called by the USB interrupt jump table. //----------------------------------------------------------------------------- // Setup Data Available Interrupt Handler void ISR_Sudav(void) interrupt 0 //F:有控制传输的8字节数据到达 { GotSUD = TRUE; // Set flag EZUSB_IRQ_CLEAR(); //F:重置中断请求,write 0 to EXIF.5 USBIRQ = bmSUDAV; // Clear SUDAV IRQ //F:向指定的位写1以清楚终端请求 } // Setup Token Interrupt Handler void ISR_Sutok(void) interrupt 0 //F:USB内核接收到Setup传输的Token { EZUSB_IRQ_CLEAR(); USBIRQ = bmSUTOK; // Clear SUTOK IRQ } void ISR_Sof(void) interrupt 0 //F:USB内核收到 Start of Frame packet { EZUSB_IRQ_CLEAR(); USBIRQ = bmSOF; // Clear SOF IRQ } void ISR_Ures(void) interrupt 0 //F:USB Reset Interrupt Request { // whenever we get a USB reset, we should revert to full speed mode //任何时刻接收到USB reset,都应该滚回全速模式 pConfigDscr = pFullSpeedConfigDscr; ((CONFIGDSCR xdata *) pConfigDscr)->type = CONFIG_DSCR; pOtherConfigDscr = pHighSpeedConfigDscr; ((CONFIGDSCR xdata *) pOtherConfigDscr)->type = OTHERSPEED_DSCR; EZUSB_IRQ_CLEAR(); USBIRQ = bmURES; // Clear URES IRQ } void ISR_Susp(void) interrupt 0 { Sleep = TRUE; EZUSB_IRQ_CLEAR(); USBIRQ = bmSUSP; } void ISR_Highspeed(void) interrupt 0 { if (EZUSB_HIGHSPEED()) { pConfigDscr = pHighSpeedConfigDscr; ((CONFIGDSCR xdata *) pConfigDscr)->type = CONFIG_DSCR; pOtherConfigDscr = pFullSpeedConfigDscr; ((CONFIGDSCR xdata *) pOtherConfigDscr)->type = OTHERSPEED_DSCR; } EZUSB_IRQ_CLEAR(); USBIRQ = bmHSGRANT; } void ISR_Ep0ack(void) interrupt 0 { } void ISR_Stub(void) interrupt 0 { } void ISR_Ep0in(void) interrupt 0 { } void ISR_Ep0out(void) interrupt 0 { } void ISR_Ep1in(void) interrupt 0 { } void ISR_Ep1out(void) interrupt 0 { } void ISR_Ep2inout(void) interrupt 0 { } void ISR_Ep4inout(void) interrupt 0 { } void ISR_Ep6inout(void) interrupt 0 { } void ISR_Ep8inout(void) interrupt 0 { } void ISR_Ibn(void) interrupt 0 { } void ISR_Ep0pingnak(void) interrupt 0 { } void ISR_Ep1pingnak(void) interrupt 0 { } void ISR_Ep2pingnak(void) interrupt 0 { } void ISR_Ep4pingnak(void) interrupt 0 { } void ISR_Ep6pingnak(void) interrupt 0 { } void ISR_Ep8pingnak(void) interrupt 0 { } void ISR_Errorlimit(void) interrupt 0 { } void ISR_Ep2piderror(void) interrupt 0 { } void ISR_Ep4piderror(void) interrupt 0 { } void ISR_Ep6piderror(void) interrupt 0 { } void ISR_Ep8piderror(void) interrupt 0 { } void ISR_Ep2pflag(void) interrupt 0 { } void ISR_Ep4pflag(void) interrupt 0 { } void ISR_Ep6pflag(void) interrupt 0 { } void ISR_Ep8pflag(void) interrupt 0 { } void ISR_Ep2eflag(void) interrupt 0 { } void ISR_Ep4eflag(void) interrupt 0 { } void ISR_Ep6eflag(void) interrupt 0 { } void ISR_Ep8eflag(void) interrupt 0 { } void ISR_Ep2fflag(void) interrupt 0 { } void ISR_Ep4fflag(void) interrupt 0 { } void ISR_Ep6fflag(void) interrupt 0 { } void ISR_Ep8fflag(void) interrupt 0 { } void ISR_GpifComplete(void) interrupt 0 { } void ISR_GpifWaveform(void) interrupt 0 { }