BulkLoop例程解读

bulkloop例程是USB固件开发中的基础例程,通过它我们可以学到很多基础知识,我在这里也利用下午的时间来学习一下bulkloop例程。   

bulkloop这个名字就说明了该固件的作用:以bulk型endpoint作为输出和输入端口,让数据"转一圈"。就是在主机端输出一组数据到FX2LP的某一个bulk型endpoint(比如EP2)的缓存中,然后固件将EP2缓存中的数据转移到另一个bulk型endpoint(比如EP6)的缓存中去,当主机端从EP6输入数据的时候,就会发现得到的数据正是之前输出到EP2的数据。   

图1 固件工程Keil界面 :   

BulkLoop例程解读

bulkloop工程本身用到的源文件有:fw.c、bulkloop.c、dscr.a51、EZUSB.LIB、USBjmpTb.OBJ。

fw.c:固件框架程序FrameWork,它包含了固件程序的主程序。框架程序使FX2LP固件有一个相对固定的运行模式,这使得开发者能够更清楚在什么地方、什么时候应该干什么。

下面是fw.c文件中的代码和我的注释,其中还有不明白的地方:

//-----------------------------------------------------------------------------

//   File:      fw.c

//   Contents:  Firmware frameworks task dispatcher and device request parser

//

// $Archive: /USB/Examples/FX2LP/bulkext/fw.c $

// $Date: 3/23/05 2:53p $

// $Revision: 8 $

//

//

//-----------------------------------------------------------------------------

// Copyright (c) 2011, Cypress Semiconductor Corporation All rights reserved

//-----------------------------------------------------------------------------

#include "..\inc\fx2.h"                    

#include "..\inc\fx2regs.h"               // F:包含了FX2LP寄存器、IO端口的地址信息,方便以后引用这些寄存器和端口。

#include "..\inc\syncdly.h"            // SYNCDELAY macro  F:包含了延时所用到的宏



//-----------------------------------------------------------------------------

// Constants

//-----------------------------------------------------------------------------

#define DELAY_COUNT   0x9248*8L  // Delay for 8 sec at 24Mhz, 4 sec at 48

#define _IFREQ  48000            // IFCLK constant for Synchronization Delay

#define _CFREQ  48000            // CLKOUT constant for Synchronization Delay



//-----------------------------------------------------------------------------

// Random Macros

//-----------------------------------------------------------------------------

#define   min(a,b) (((a)<(b))?(a):(b))

#define   max(a,b) (((a)>(b))?(a):(b))



//-----------------------------------------------------------------------------

// Global Variables

//-----------------------------------------------------------------------------

volatile BOOL   GotSUD;

BOOL      Rwuen;

BOOL      Selfpwr;

volatile BOOL   Sleep;                  // Sleep mode enable flag



WORD   pDeviceDscr;   // Pointer to Device Descriptor; Descriptors may be moved

WORD   pDeviceQualDscr;

WORD   pHighSpeedConfigDscr;

WORD   pFullSpeedConfigDscr;   

WORD   pConfigDscr;

WORD   pOtherConfigDscr;   

WORD   pStringDscr;   



//-----------------------------------------------------------------------------

// Prototypes

//-----------------------------------------------------------------------------

void SetupCommand(void);

void TD_Init(void);

void TD_Poll(void);

BOOL TD_Suspend(void);

BOOL TD_Resume(void);



BOOL DR_GetDescriptor(void);

BOOL DR_SetConfiguration(void);

BOOL DR_GetConfiguration(void);

BOOL DR_SetInterface(void);

BOOL DR_GetInterface(void);

BOOL DR_GetStatus(void);

BOOL DR_ClearFeature(void);

BOOL DR_SetFeature(void);

BOOL DR_VendorCmnd(void);



// this table is used by the epcs macro 

const char code  EPCS_Offset_Lookup_Table[] =

{

   0,    // EP1OUT

   1,    // EP1IN

   2,    // EP2OUT

   2,    // EP2IN

   3,    // EP4OUT

   3,    // EP4IN

   4,    // EP6OUT

   4,    // EP6IN

   5,    // EP8OUT

   5,    // EP8IN

};



// macro for generating the address of an endpoint's control and status register (EPnCS)

#define epcs(EP) (EPCS_Offset_Lookup_Table[(EP & 0x7E) | (EP > 128)] + 0xE6A1)



//-----------------------------------------------------------------------------

// Code

//-----------------------------------------------------------------------------



// Task dispatcher

void main(void)

{

   DWORD   i;

   WORD   offset;

   DWORD   DevDescrLen;

   DWORD   j=0;

   WORD   IntDescrAddr;

   WORD   ExtDescrAddr;



   // Initialize Global States

   Sleep = FALSE;               // Disable sleep mode

   Rwuen = FALSE;               // Disable remote wakeup

   Selfpwr = FALSE;            // Disable self powered

   GotSUD = FALSE;               // Clear "Got setup data" flag



   // Initialize user device

   TD_Init();            //F:该函数定义在bulkloop.c文件中,是执行用户意图的初始化函数,比如定义端点和FIFO属性等.



   // The following section of code is used to relocate the descriptor table. 

   // The frameworks uses SUDPTRH and SUDPTRL to automate the SETUP requests

   // for descriptors.  These registers only work with memory locations

   // in the EZ-USB internal RAM.  Therefore, if the descriptors are located

   // in external RAM, they must be copied to in internal RAM.  

   // The descriptor table is relocated by the frameworks ONLY if it is found 

   // to be located in external memory.

   pDeviceDscr = (WORD)&DeviceDscr;              //F:DeviceDscr结构体的定义在fw.h文件中,赋值发生在dscr.a51中. 楼下几位情况类似

   pDeviceQualDscr = (WORD)&DeviceQualDscr;

   pHighSpeedConfigDscr = (WORD)&HighSpeedConfigDscr;

   pFullSpeedConfigDscr = (WORD)&FullSpeedConfigDscr;

   pStringDscr = (WORD)&StringDscr;



   // Is the descriptor table in external RAM (> 16Kbytes)?  If yes,

   // then relocate.

   // Note that this code only checks if the descriptors START in 

   // external RAM.  It will not work if the descriptor table spans

   // internal and external RAM.

   if ((WORD)&DeviceDscr & 0xC000)        //F:检测描述符地址是否在外置存储器中

   {

      // first, relocate the descriptors

      IntDescrAddr = INTERNAL_DSCR_ADDR;    //F: fx.h文件中, #define INTERNAL_DSCR_ADDR 0x0080   // Relocate Descriptors to 0x80

      ExtDescrAddr = (WORD)&DeviceDscr;

      DevDescrLen = (WORD)&UserDscr - (WORD)&DeviceDscr + 2;    //F:获得描述符的完整长度,为下面的转移做准备.

      for (i = 0; i < DevDescrLen; i++)

         *((BYTE xdata *)IntDescrAddr+i) = *((BYTE xdata *)ExtDescrAddr+i);



      // update all of the descriptor pointers   //F:将描述指针整体指向内部的描述符.

      pDeviceDscr = IntDescrAddr;

      offset = (WORD)&DeviceDscr - INTERNAL_DSCR_ADDR;

      pDeviceQualDscr -= offset;

      pConfigDscr -= offset;

      pOtherConfigDscr -= offset;

      pHighSpeedConfigDscr -= offset;

      pFullSpeedConfigDscr -= offset;

      pStringDscr -= offset;

   }



   EZUSB_IRQ_ENABLE();            // Enable USB interrupt (INT2) //F:定义在fx.h中, 就是EUSB = 1.

   EZUSB_ENABLE_RSMIRQ();            // Wake-up interrupt        //F:定义在fx.h中, (EICON |= 0x20)



   INTSETUP |= (bmAV2EN | bmAV4EN);     // Enable INT 2 & 4 autovectoring  //F:使能INT2和INT4自动指针



   USBIE |= bmSUDAV | bmSUTOK | bmSUSP | bmURES | bmHSGRANT;   // Enable selected interrupts

   EA = 1;                  // Enable 8051 interrupts



#ifndef NO_RENUM

   // Renumerate if necessary.  Do this by checking the renum bit.  If it

   // is already set, there is no need to renumerate.  The renum bit will

   // already be set if this firmware was loaded from an eeprom.

   //F:如果USBCS寄存器的RENUM位是0,USB核响应设备请求,意味着外接存储器中没有现成的固件(0xC2代表有),需要从主机下载固件.当固件被主机下载到USB之后,会将RENUM位置1.

   if(!(USBCS & bmRENUM))

   {

       EZUSB_Discon(TRUE);   // renumerate

   }

#endif



   // unconditionally re-connect.  If we loaded from eeprom we are

   // disconnected and need to connect.  If we just renumerated this

   // is not necessary but doesn't hurt anything

   // F:这句话是无条件重新连接的节奏,为什么从EEPROM载入之后需要重新连接?

   USBCS &=~bmDISCON;

   //F:时钟控制寄存器& (~0000 0111),后三位都是1,使MCU的MOVX指令速度最慢(9周期),以兼容慢速存储器之类的.

   CKCON = (CKCON&(~bmSTRETCH)) | FW_STRETCH_VALUE; // Set stretch 





   // clear the Sleep flag. //F:sleep旗标用来表示USB是否阻断中断请求.见bulkloop.c文件中的赋值语句.

   Sleep = FALSE;



   // Task Dispatcher  //F:任务分配器

   while(TRUE)               // Main Loop //F:不停循环

   {

      // Poll User Device

      TD_Poll();    //F:重复调用函数,大家想干什么,就在bulkloop.c文件中定义它吧.



      // Check for pending SETUP     //F:查看有无等待中的控制命令

      if(GotSUD)                    //F:GotSUD旗标一看就像是SUDAV(setup data available) IRQ中断请求的好朋友. 见bulkloop.c中的SUDAV中断响应函数.

      {

         SetupCommand();          // Implement setup command \\F:后面有定义.

         GotSUD = FALSE;          // Clear SETUP flag

      }



      // check for and handle suspend.

      // NOTE: Idle mode stops the processor clock.  There are only two

      // ways out of idle mode, the WAKEUP pin, and detection of the USB

      // resume state on the USB bus.  The timers will stop and the

      // processor will not wake up on any other interrupts.

      if (Sleep)

      {

         if(TD_Suspend())

         { 

            Sleep = FALSE;     // Clear the "go to sleep" flag.  Do it here to prevent any race condition between wakeup and the next sleep.

            do

            {

               EZUSB_Susp();         // Place processor in idle mode.    //F:没见到定义???

            }

            while(!Rwuen && EZUSB_EXTWAKEUP());

            // above.  Must continue to go back into suspend if the host has disabled remote wakeup

            // *and* the wakeup was caused by the external wakeup pin.



            // 8051 activity will resume here due to USB bus or Wakeup# pin activity.

            EZUSB_Resume();   // If source is the Wakeup# pin, signal the host to Resume.     //F:没见到定义??? 

            TD_Resume();        //F:函数可自定义,用来在唤醒时执行.

         }   

      }



   }

}



BOOL HighSpeedCapable()

{

   // this function determines if the chip is high-speed capable.

   // FX2 and FX2LP are high-speed capable. FX1 is not - it does

   // not have a high-speed transceiver.



   if (GPCR2 & bmFULLSPEEDONLY)

      return FALSE;

   else

      return TRUE;

}   



// Device request parser 

//F:设备请求分析器,这里大部分是一些日常工作,但是Vendor request有较大的DIY空间,

//有时候用户可以利用自定义的Vendor Request做很多事.

void SetupCommand(void)

{

   void   *dscr_ptr;



   switch(SETUPDAT[1])

   {

      case SC_GET_DESCRIPTOR:                  // *** Get Descriptor

         if(DR_GetDescriptor())

            switch(SETUPDAT[3])         

            {

               case GD_DEVICE:            // Device

                  SUDPTRH = MSB(pDeviceDscr);

                  SUDPTRL = LSB(pDeviceDscr);

                  break;

               case GD_DEVICE_QUALIFIER:            // Device Qualifier

                     // only retuen a device qualifier if this is a high speed

                  // capable chip.

                     if (HighSpeedCapable())

                  {

                      SUDPTRH = MSB(pDeviceQualDscr);

                      SUDPTRL = LSB(pDeviceQualDscr);

                  }

                  else

                  {

                      EZUSB_STALL_EP0();

                  }

                  break;

               case GD_CONFIGURATION:         // Configuration

                  SUDPTRH = MSB(pConfigDscr);

                  SUDPTRL = LSB(pConfigDscr);

                  break;

               case GD_OTHER_SPEED_CONFIGURATION:  // Other Speed Configuration

                  SUDPTRH = MSB(pOtherConfigDscr);

                  SUDPTRL = LSB(pOtherConfigDscr);

                  break;

               case GD_STRING:            // String

                  if(dscr_ptr = (void *)EZUSB_GetStringDscr(SETUPDAT[2]))

                  {

                     SUDPTRH = MSB(dscr_ptr);

                     SUDPTRL = LSB(dscr_ptr);

                  }

                  else 

                     EZUSB_STALL_EP0();   // Stall End Point 0

                  break;

               default:            // Invalid request

                  EZUSB_STALL_EP0();      // Stall End Point 0

            }

         break;

      case SC_GET_INTERFACE:                  // *** Get Interface

         DR_GetInterface();

         break;

      case SC_SET_INTERFACE:                  // *** Set Interface

         DR_SetInterface();

         break;

      case SC_SET_CONFIGURATION:               // *** Set Configuration

         DR_SetConfiguration();

         break;

      case SC_GET_CONFIGURATION:               // *** Get Configuration

         DR_GetConfiguration();

         break;

      case SC_GET_STATUS:                  // *** Get Status

         if(DR_GetStatus())

            switch(SETUPDAT[0])

            {

               case GS_DEVICE:            // Device

                  EP0BUF[0] = ((BYTE)Rwuen << 1) | (BYTE)Selfpwr;

                  EP0BUF[1] = 0;

                  EP0BCH = 0;

                  EP0BCL = 2;

                  break;

               case GS_INTERFACE:         // Interface

                  EP0BUF[0] = 0;

                  EP0BUF[1] = 0;

                  EP0BCH = 0;

                  EP0BCL = 2;

                  break;

               case GS_ENDPOINT:         // End Point

                  EP0BUF[0] = *(BYTE xdata *) epcs(SETUPDAT[4]) & bmEPSTALL;

                  EP0BUF[1] = 0;

                  EP0BCH = 0;

                  EP0BCL = 2;

                  break;

               default:            // Invalid Command

                  EZUSB_STALL_EP0();      // Stall End Point 0

            }

         break;

      case SC_CLEAR_FEATURE:                  // *** Clear Feature

         if(DR_ClearFeature())

            switch(SETUPDAT[0])

            {

               case FT_DEVICE:            // Device

                  if(SETUPDAT[2] == 1)

                     Rwuen = FALSE;       // Disable Remote Wakeup

                  else

                     EZUSB_STALL_EP0();   // Stall End Point 0

                  break;

               case FT_ENDPOINT:         // End Point

                  if(SETUPDAT[2] == 0)

                  {

                     *(BYTE xdata *) epcs(SETUPDAT[4]) &= ~bmEPSTALL;

                     EZUSB_RESET_DATA_TOGGLE( SETUPDAT[4] );

                  }

                  else

                     EZUSB_STALL_EP0();   // Stall End Point 0

                  break;

            }

         break;

      case SC_SET_FEATURE:                  // *** Set Feature

         if(DR_SetFeature())

            switch(SETUPDAT[0])

            {

               case FT_DEVICE:            // Device

                  if(SETUPDAT[2] == 1)

                     Rwuen = TRUE;      // Enable Remote Wakeup

                  else if(SETUPDAT[2] == 2)

                     // Set Feature Test Mode.  The core handles this request.  However, it is

                     // necessary for the firmware to complete the handshake phase of the

                     // control transfer before the chip will enter test mode.  It is also

                     // necessary for FX2 to be physically disconnected (D+ and D-)

                     // from the host before it will enter test mode.

                     break;

                  else

                     EZUSB_STALL_EP0();   // Stall End Point 0

                  break;

               case FT_ENDPOINT:         // End Point

                  *(BYTE xdata *) epcs(SETUPDAT[4]) |= bmEPSTALL;

                  break;

               default:

                  EZUSB_STALL_EP0();      // Stall End Point 0

            }

         break;

      default:                     // *** Invalid Command

         if(DR_VendorCmnd())

            EZUSB_STALL_EP0();            // Stall End Point 0

   }



   // Acknowledge handshake phase of device request

   EP0CS |= bmHSNAK;        //F:进入握手阶段

}



// Wake-up interrupt handler

void resume_isr(void) interrupt WKUP_VECT

{

   EZUSB_CLEAR_RSMIRQ();

}
View Code

下面是bulkloop.c文件中的代码和我的注释,其中还有不明白的地方,比如“interrupt 0”:

//-----------------------------------------------------------------------------

//   File:      bulkloop.c

//   Contents:  Hooks required to implement USB peripheral function.

//

// $Archive: /USB/Examples/FX2LP/bulkloop/bulkloop.c $

//

//

//-----------------------------------------------------------------------------

// Copyright (c) 2011, Cypress Semiconductor Corporation All rights reserved

//-----------------------------------------------------------------------------

#pragma NOIV               // Do not generate interrupt vectors //F:告诉编译器,不要使用默认的中断向量表



#include "..\inc\fx2.h"

#include "..\inc\fx2regs.h"

#include "..\inc\syncdly.h"            // SYNCDELAY macro



extern BOOL GotSUD;             // Received setup data flag

extern BOOL Sleep;

extern BOOL Rwuen;

extern BOOL Selfpwr;



BYTE Configuration;             // Current configuration

BYTE AlternateSetting;          // Alternate settings



#define VR_NAKALL_ON    0xD0    //F: 1101 0000

#define VR_NAKALL_OFF   0xD1    //F: 1101 0001



//-----------------------------------------------------------------------------

// Task Dispatcher hooks        //F:任务分配挂钩

//   The following hooks are called by the task dispatcher. //F:挂钩函数是被任务分配器调用的

//-----------------------------------------------------------------------------



void TD_Init(void)             // Called once at startup

{

   // set the CPU clock to 48MHz

   CPUCS = ((CPUCS & ~bmCLKSPD) | bmCLKSPD1) ;    //F:CLKSPD1=1且CLKSPD0=0 意思是48MHz



   // set the slave FIFO interface to 48MHz    

   //F:时钟来源定为外部,内部FIFO\GPIF时钟设为48MHz,IFCLK输出端口为三态,IFCLK极性不翻转,同步方式,PE012为端口,ABD端口为端口模式

   IFCONFIG |= 0x40;



  //F: 下面的寄存器的修改之间需要添加同步延时

  // Registers which require a synchronization delay, see section 15.14

  // FIFORESET        FIFOPINPOLAR

  // INPKTEND         OUTPKTEND

  // EPxBCH:L         REVCTL

  // GPIFTCB3         GPIFTCB2

  // GPIFTCB1         GPIFTCB0

  // EPxFIFOPFH:L     EPxAUTOINLENH:L

  // EPxFIFOCFG       EPxGPIFFLGSEL

  // PINFLAGSxx       EPxFIFOIRQ

  // EPxFIFOIE        GPIFIRQ

  // GPIFIE           GPIFADRH:L

  // UDMACRCH:L       EPxGPIFTRIG

  // GPIFTRIG

  

  // Note: The pre-REVE EPxGPIFTCH/L register are affected, as well...

  //      ...these have been replaced by GPIFTC[B3:B0] registers



  // default: all endpoints have their VALID bit set

  // default: TYPE1 = 1 and TYPE0 = 0 --> BULK  

  // default: EP2 and EP4 DIR bits are 0 (OUT direction)

  // default: EP6 and EP8 DIR bits are 1 (IN direction)

  // default: EP2, EP4, EP6, and EP8 are double buffered



  // we are just using the default values, yes this is not necessary...

  EP1OUTCFG = 0xA0;

  EP1INCFG = 0xA0;

  SYNCDELAY;                    // see TRM section 15.14

  EP2CFG = 0xA2; //F:1010 0010意思是:有效,OUT,Bulk,512,0,Double.

  SYNCDELAY;                    

  EP4CFG = 0xA0; //F:1010 0000意思是:有效,OUT,Bulk,512,0,00(4和8端点的末尾两位只能是0,在2和6都是Double情况下,意味着Double).

  SYNCDELAY;                    

  EP6CFG = 0xE2; //F:1110 0010意思是:有效,IN,Bulk,512,0,Double.

  SYNCDELAY;                    

  EP8CFG = 0xE0; //F:1110 0000意思是:有效,OUT,Bulk,512,0,00.



  // out endpoints do not come up armed //F:输出端点一开始没有被arm.

  

  // since the defaults are double buffered we must write dummy byte counts twice

  //F:因为端点默认是双倍缓冲(512*2),我们必须用无用数据写两次字节计数,用来arm输出端点.

  SYNCDELAY;                    

  EP2BCL = 0x80;                // arm EP2OUT by writing byte count w/skip.

  SYNCDELAY;                    

  EP2BCL = 0x80;

  SYNCDELAY;                    

  EP4BCL = 0x80;                // arm EP4OUT by writing byte count w/skip.

  SYNCDELAY;                    

  EP4BCL = 0x80;    



  // enable dual autopointer feature //F:使能自动指针

  AUTOPTRSETUP |= 0x01;



}





void TD_Poll(void)              // Called repeatedly while the device is idle //F:重复调用

{

  WORD i;

  WORD count;



  if(!(EP2468STAT & bmEP2EMPTY))    //F:如果EP2的buff不空.EP2468STAT中的各个位其实就是EPxCS中的F和E位,标识满\空.

  { // check EP2 EMPTY(busy) bit in EP2468STAT (SFR), core set's this bit when FIFO is empty

     if(!(EP2468STAT & bmEP6FULL))    //F:如果EP6的buff不满.

     {  // check EP6 FULL(busy) bit in EP2468STAT (SFR), core set's this bit when FIFO is full

        APTR1H = MSB( &EP2FIFOBUF );    //F:自动指针1指向EP2的buffer

        APTR1L = LSB( &EP2FIFOBUF );



        AUTOPTRH2 = MSB( &EP6FIFOBUF );    //F:自动指针2指向EP6的buffer

        AUTOPTRL2 = LSB( &EP6FIFOBUF );



        count = (EP2BCH << 8) + EP2BCL;    //F:计算EP2有多少字节



        // loop EP2OUT buffer data to EP6IN

        for( i = 0x0000; i < count; i++ )

        {

           // setup to transfer EP2OUT buffer to EP6IN buffer using AUTOPOINTER(s)

           // F:利用自动指针进行EP2和EP6之间的数据转移

           EXTAUTODAT2 = EXTAUTODAT1; // F:自动指针1指向的数据到自动指针2指向的空间

        }

        EP6BCH = EP2BCH;      //F:宝贝数据长度到EP6的计数,准备接下来的IN操作

        SYNCDELAY;  

        EP6BCL = EP2BCL;        // arm EP6IN

        SYNCDELAY;                    

        EP2BCL = 0x80;          // re(arm) EP2OUT

     }

  }



  if(!(EP2468STAT & bmEP4EMPTY))

  { // check EP4 EMPTY(busy) bit in EP2468STAT (SFR), core set's this bit when FIFO is empty

     if(!(EP2468STAT & bmEP8FULL))

     {  // check EP8 FULL(busy) bit in EP2468STAT (SFR), core set's this bit when FIFO is full

        APTR1H = MSB( &EP4FIFOBUF );

        APTR1L = LSB( &EP4FIFOBUF );



        AUTOPTRH2 = MSB( &EP8FIFOBUF );

        AUTOPTRL2 = LSB( &EP8FIFOBUF );



        count = (EP4BCH << 8) + EP4BCL;



        // loop EP4OUT buffer data to EP8IN

        for( i = 0x0000; i < count; i++ )

        {

           // setup to transfer EP4OUT buffer to EP8IN buffer using AUTOPOINTER(s)

           EXTAUTODAT2 = EXTAUTODAT1;

        }

        EP8BCH = EP4BCH;  

        SYNCDELAY;  

        EP8BCL = EP4BCL;        // arm EP8IN

        SYNCDELAY;                    

        EP4BCL = 0x80;          // re(arm) EP4OUT

     }

  }

}



BOOL TD_Suspend(void)          // Called before the device goes into suspend mode 可自定义

{

   return(TRUE);

}



BOOL TD_Resume(void)          // Called after the device resumes 可自定义

{

   return(TRUE);

}



//-----------------------------------------------------------------------------

// Device Request hooks 设备请求执行函数,大多数可自定义

//   The following hooks are called by the end point 0 device request parser.

//-----------------------------------------------------------------------------



BOOL DR_GetDescriptor(void)

{

   return(TRUE);

}



BOOL DR_SetConfiguration(void)   // Called when a Set Configuration command is received

{

   Configuration = SETUPDAT[2];    //F:Configuration这个变量是哪里定义的?还是编译器内部定义的?如何与描述符表联系在一起???

   return(TRUE);            // Handled by user code

}



BOOL DR_GetConfiguration(void)   // Called when a Get Configuration command is received

{

   EP0BUF[0] = Configuration;

   EP0BCH = 0;

   EP0BCL = 1;                //F: arm EP0

   return(TRUE);            // Handled by user code

}



BOOL DR_SetInterface(void)       // Called when a Set Interface command is received

{

   AlternateSetting = SETUPDAT[2];

   return(TRUE);            // Handled by user code

}



BOOL DR_GetInterface(void)       // Called when a Set Interface command is received

{

   EP0BUF[0] = AlternateSetting;

   EP0BCH = 0;

   EP0BCL = 1;

   return(TRUE);            // Handled by user code

}



BOOL DR_GetStatus(void)

{

   return(TRUE);

}



BOOL DR_ClearFeature(void)

{

   return(TRUE);

}



BOOL DR_SetFeature(void)

{

   return(TRUE);

}



BOOL DR_VendorCmnd(void)    //F:生产商请求

{

  BYTE tmp;

  

  switch (SETUPDAT[1])

  {

     case VR_NAKALL_ON:        //F:NAK所有transfer请求

        tmp =FIFORESET;        //F:为什么不直接 FIFORESET|=bmNAKALL ???

        tmp |= bmNAKALL;      

        SYNCDELAY;                    

        FIFORESET = tmp;    //F:这样费周折是因为FIFORESET不可以按位访问吗???

        break;

     case VR_NAKALL_OFF:    

        tmp = FIFORESET;

        tmp &= ~bmNAKALL;      

        SYNCDELAY;                    

        FIFORESET = tmp;

        break;

     default:

        return(TRUE);

  }



  return(FALSE);

}



//-----------------------------------------------------------------------------

// USB Interrupt Handlers

//   The following functions are called by the USB interrupt jump table.

//-----------------------------------------------------------------------------



// Setup Data Available Interrupt Handler

void ISR_Sudav(void) interrupt 0    //F:有控制传输的8字节数据到达

{

   GotSUD = TRUE;            // Set flag

   EZUSB_IRQ_CLEAR();        //F:重置中断请求,write 0 to EXIF.5

   USBIRQ = bmSUDAV;         // Clear SUDAV IRQ //F:向指定的位写1以清楚终端请求

}



// Setup Token Interrupt Handler

void ISR_Sutok(void) interrupt 0    //F:USB内核接收到Setup传输的Token 

{

   EZUSB_IRQ_CLEAR();

   USBIRQ = bmSUTOK;         // Clear SUTOK IRQ

}



void ISR_Sof(void) interrupt 0        //F:USB内核收到 Start of Frame packet

{

   EZUSB_IRQ_CLEAR();

   USBIRQ = bmSOF;            // Clear SOF IRQ

}



void ISR_Ures(void) interrupt 0    //F:USB Reset Interrupt Request

{

   // whenever we get a USB reset, we should revert to full speed mode

   //任何时刻接收到USB reset,都应该滚回全速模式

   pConfigDscr = pFullSpeedConfigDscr;

   ((CONFIGDSCR xdata *) pConfigDscr)->type = CONFIG_DSCR;

   pOtherConfigDscr = pHighSpeedConfigDscr;

   ((CONFIGDSCR xdata *) pOtherConfigDscr)->type = OTHERSPEED_DSCR;



   EZUSB_IRQ_CLEAR();

   USBIRQ = bmURES;         // Clear URES IRQ

}



void ISR_Susp(void) interrupt 0

{

   Sleep = TRUE;

   EZUSB_IRQ_CLEAR();

   USBIRQ = bmSUSP;

}



void ISR_Highspeed(void) interrupt 0

{

   if (EZUSB_HIGHSPEED())

   {

      pConfigDscr = pHighSpeedConfigDscr;

      ((CONFIGDSCR xdata *) pConfigDscr)->type = CONFIG_DSCR;

      pOtherConfigDscr = pFullSpeedConfigDscr;

      ((CONFIGDSCR xdata *) pOtherConfigDscr)->type = OTHERSPEED_DSCR;

   }



   EZUSB_IRQ_CLEAR();

   USBIRQ = bmHSGRANT;

}

void ISR_Ep0ack(void) interrupt 0

{

}

void ISR_Stub(void) interrupt 0

{

}

void ISR_Ep0in(void) interrupt 0

{

}

void ISR_Ep0out(void) interrupt 0

{

}

void ISR_Ep1in(void) interrupt 0

{

}

void ISR_Ep1out(void) interrupt 0

{

}

void ISR_Ep2inout(void) interrupt 0

{

}

void ISR_Ep4inout(void) interrupt 0

{

}

void ISR_Ep6inout(void) interrupt 0

{

}

void ISR_Ep8inout(void) interrupt 0

{

}

void ISR_Ibn(void) interrupt 0

{

}

void ISR_Ep0pingnak(void) interrupt 0

{

}

void ISR_Ep1pingnak(void) interrupt 0

{

}

void ISR_Ep2pingnak(void) interrupt 0

{

}

void ISR_Ep4pingnak(void) interrupt 0

{

}

void ISR_Ep6pingnak(void) interrupt 0

{

}

void ISR_Ep8pingnak(void) interrupt 0

{

}

void ISR_Errorlimit(void) interrupt 0

{

}

void ISR_Ep2piderror(void) interrupt 0

{

}

void ISR_Ep4piderror(void) interrupt 0

{

}

void ISR_Ep6piderror(void) interrupt 0

{

}

void ISR_Ep8piderror(void) interrupt 0

{

}

void ISR_Ep2pflag(void) interrupt 0

{

}

void ISR_Ep4pflag(void) interrupt 0

{

}

void ISR_Ep6pflag(void) interrupt 0

{

}

void ISR_Ep8pflag(void) interrupt 0

{

}

void ISR_Ep2eflag(void) interrupt 0

{

}

void ISR_Ep4eflag(void) interrupt 0

{

}

void ISR_Ep6eflag(void) interrupt 0

{

}

void ISR_Ep8eflag(void) interrupt 0

{

}

void ISR_Ep2fflag(void) interrupt 0

{

}

void ISR_Ep4fflag(void) interrupt 0

{

}

void ISR_Ep6fflag(void) interrupt 0

{

}

void ISR_Ep8fflag(void) interrupt 0

{

}

void ISR_GpifComplete(void) interrupt 0

{

}

void ISR_GpifWaveform(void) interrupt 0

{

}
View Code

 

 

 

 

   

你可能感兴趣的:(loop)