- 企业如何有效评估YashanDB的实施效果
数据库
随着数据不断增长和业务需求的变化,企业在数据库系统的选择和实施上面临诸多挑战,例如性能瓶颈、数据一致性等问题。YashanDB作为一种新兴的数据库技术,具备高性能、高可用性与可扩展性,吸引了许多企业的关注。然而,如何评估其实施效果,以及是否真正能推动企业业务发展,是IT决策者亟需解决的问题。本文将围绕YashanDB的实施效果评估方法展开探讨,帮助技术人员和企业管理者从技术角度深入理解这一过程及其
- 企业为什么选择YashanDB数据库?七大核心优势解析
数据库
在快速发展的信息化时代,企业在选择数据库时面临许多挑战,包括性能瓶颈、数据一致性、可扩展性和高可用性等。随着数据量的不断增长,传统数据库难以满足日益增长的需求,企业需要一种更为高效、稳定的解决方案。YashanDB数据库凭借其独特的体系架构和丰富的功能逐渐崭露头角,成为企业数据存储和管理的优选平台。本文旨在深入剖析YashanDB的七大核心优势,帮助读者更好地理解其价值。高性能YashanDB采用
- 企业如何选择合适的YashanDB数据库部署策略
数据库
在当今数据驱动的商业环境中,企业面临着多种数据库技术选择,如何满足对性能、可用性和扩展性的高要求成为了一项重要挑战。尤其是在高并发、高可用性和性能优化等方面,企业必须在数种数据库部署策略中做出明智选择。YashanDB作为一款高性能数据库,提供了多种部署选项,如单机部署、分布式集群部署和共享集群部署。本文将深入分析这些部署策略的技术原理及其适用场景,帮助企业根据自身需求选择最合适的YashanDB
- 企业如何通过YashanDB实现数据的实时同步与备份?
数据库
在当今数据驱动的商业环境中,数据的实时同步与备份变得越来越重要。企业在运作中倘若未能有效管理数据同步及备份,不仅会影响业务效率,也会增加数据丢失的风险。如何实现高效、可靠的数据实时同步与备份,成为企业IT部门亟待解决的技术问题。YashanDB作为一款优秀的数据库,具备强大的实时同步与备份能力,为企业提供了有效的解决方案。YashanDB的部署架构YashanDB支持三种部署形态:单机部署、共享集
- 企业如何利用YashanDB提升系统稳定性
数据库
在现代多变的商业环境中,企业面临着信息处理能力的诸多挑战,如系统崩溃、数据丢失等。为应对这些挑战,提升数据库系统的稳定性显得尤为重要。YashanDB作为一款先进的分布式数据库,凭借其独特的架构和技术特性,能够为企业提供更为可靠的系统稳定性保障。本文将深入分析YashanDB提升系统稳定性的核心技术点及其优势。核心技术点高可用性架构YashanDB支持多种部署模式,如单机主备部署、分布式集群部署以
- 企业如何利用YashanDB实现数据资产价值最大化
数据库
在当今数据驱动的经济环境中,企业面临着如何有效优化数据管理以提升业务竞争力的挑战。尤其是数据库技术的应用能力,往往会直接影响到数据处理效率和决策支持的速度。因此,企业需要寻找有效的战略,比如"如何优化查询速度?"来实现数据资产的最大化。从而提升组织的决策质量及用户体验,有效推动业务创新。YashanDB体系架构与核心技术优势YashanDB作为一款现代化的数据库管理系统,其体系架构灵活多样,支持单
- 企业如何构建基于YashanDB的数据分析系统
数据库
随着大数据时代的到来,企业面临的一个核心技术问题是如何有效、快速地进行数据分析以指导决策。一个重要的性能瓶颈在于数据库的查询速度和存储结构的设计。尤其在处理海量数据时,如何在保证数据查询性能的同时确保数据的准确性和完整性,这问题显得尤为重要。YashanDB作为一个高性能的数据库系统,通过其独特的体系架构和强大的数据存储及访问机制,为企业构建高效的数据分析系统提供了可靠的技术支持。YashanDB
- YashanDB数据库安装流程和配置指南
数据库
在现代数据库技术中,企业面临着诸多挑战,包括性能瓶颈、数据一致性问题、数据安全性等。YashanDB作为一款新兴数据库,凭借其高性能、高可用性和灵活的配置选项,为企业提供了可靠的数据管理解决方案。本文旨在深入探讨YashanDB数据库的安装流程和配置指南,帮助用户快速上手并有效配置数据库环境。YashanDB数据库安装流程准备环境在安装YashanDB之前,需要提前准备好环境。具体包括:确保操作系
- 从用户需求出发设计YashanDB数据库的架构
数据库
在现代应用中,性能和可扩展性是数据库设计中至关重要的指标。随着数据量的增加,如何在保持高性能的前提下支持复杂的查询需求,已经成为数据库产业面临的一大难题。因此,当前迫切需要一种灵活和高效的数据库架构,能适应变动的用户需求,同时提供良好的业务连续性和可靠性。YashanDB的体系架构部署架构YashanDB支持三种主要的部署架构,包括单机部署、分布式集群部署和共享集群部署。单机部署:适用于小型应用和
- 了解YashanDB的索引机制,提升查询效率
数据库
在现代数据库系统中,数据的高效查询是一个普遍面临的挑战。查询速度过慢直接影响了应用程序性能和用户体验。尤其在数据量激增的情况下,未能及时优化查询策略,将导致系统性能逐渐下降。索引机制作为关系型数据库查询优化的基石,显著提升了数据检索速度、减少了I/O开销。本文将深入探讨YashanDB的索引机制,帮助用户更好地理解和利用这一关键技术以提升数据查询效率。YashanDB的索引机制概述YashanDB
- 从入门到精通:YashanDB数据库学习指南
数据库
在现代的数据库技术领域,性能瓶颈和数据一致性问题是开发人员和数据库管理员(DBA)面临的重要挑战。随着数据量的激增和对实时分析的需求上升,如何有效管理和利用数据库显得尤为重要。YashanDB作为一款新兴数据库,提供了一系列功能以应对这些挑战,适合希望深入理解数据库体系结构的开发者和DBA。本文旨在提供一份全面的YashanDB学习指南,内容涵盖系统架构、核心功能,并为实际应用提供具体建议,使读者
- 时序数据库 TDengine × Node-RED:连接你的“数”与“控”
数据库sql
在工业场景中,我们经常会遇到这样的需求:设备数据上来之后,既要能存、能查,还希望能实时触发告警、控制现场设备。但如果从头写程序、配接口,成本不低、周期也长。这时候,一款能低代码快速串起“采集-存储-分析-控制”全流程的工具,往往能省下不少力气。现在,时序数据库TDengine与Node-RED正式打通,二者结合可为工业IoT打造一套真正“开箱即用”的全栈式解决方案。从毫秒级数据写入,到实时查询,再
- AI+大数据:社交网络分析在金融风控中的完整流程
AI智能应用
AI大模型应用入门实战与进阶人工智能大数据ai
AI+大数据:社交网络分析在金融风控中的完整流程关键词:AI、大数据、社交网络分析、金融风控、完整流程摘要:本文详细讲述了在金融风控领域运用AI和大数据进行社交网络分析的完整流程。通过通俗易懂的语言,从背景知识入手,解释核心概念,阐述算法原理,分享项目实战经验,探讨实际应用场景,推荐相关工具资源,展望未来发展趋势与挑战,旨在让读者全面了解这一复杂技术在金融风控中的应用。背景介绍目的和范围我们的目的
- 大规模分布式数据库读写分离架构:一致性、可用性与性能的权衡实践
目录1引言:数据库架构的核心三角2原创架构设计2.1读写分离系统架构2.2读写核心流程3企业级实现代码3.1Python路由服务核心代码3.2TypeScript复制状态监控3.3Kubernetes部署YAML示例4性能对比量化分析5生产级部署与安全方案5.1高可用部署架构5.2安全审计方案6技术前瞻性分析6.1演进路线图6.2关键趋势解读7附录:完整技术图谱结论1引言:数据库架构的核心三角在大
- 自动上报数据报表方案和实施避坑指南
Alex艾力的IT数字空间
javaintellij-ideaspringboot数据库架构架构小程序集成测试
一、方案设计系统架构设计采用分层架构:数据采集层→数据处理层→报表生成层→分发展示层(参考数据采集流程&系统架构设计)核心模块组成自动化采集模块(API/数据库/文件接口)智能清洗转换模块(数据治理规则引擎)可视化报表生成模块(模板引擎+动态计算)定时调度与监控模块(任务队列+异常预警)二、实施阶段1:需求分析与规划业务需求确认确定报表类型(日报/周报/月报)识别关键指标(销售额、库存周转率等)明
- odbc连接失败,SQLSTATE=IM003,由于系统错误193:指定的驱动无法加载 odbcjt32.dll
问题说明 前几天有用户反馈在他电脑上运行我们开发的程序报错,错误信息为“odbc连接失败,SQLSTATE=IM003,由于系统错误193:指定的驱动无法加载odbcjt32.dll”。通过电话联系用户,询问用户是在做什么操作时出现的错误,最终分析发现出错的时机是程序连接本地access数据库的时候。用户电脑是64位的Win7系统,我们的系统是C#编写的x86格式的可执行程序。处理过程 通过在
- Django
ઈ一笑ഒ
django
1.Django和Tornado的关系Django是一个高级PythonWeb框架,它鼓励快速开发和干净、实用的设计。Django遵循MVC(模型-视图-控制器)设计模式的一个变种,称为MTV(模型-模板-视图)。Django框架提供了大量的“开箱即用”功能,包括:ORM(对象关系映射),让数据库操作变得简单。丰富的模板系统,用于快速生成动态网页。强大的表单系统,简化用户输入和验证过程。认证系统、
- Spring AI ETL Pipeline使用指南
超级小忍
SpringAIspring人工智能
前言(Introduction)版本声明:本文基于SpringAI1.0.0版本编写。由于SpringAI目前仍处于活跃开发阶段,API和组件可能在后续版本中发生变化,请注意及时关注官方文档更新以保持兼容性。在当今大数据和人工智能快速发展的背景下,ETL(Extract,Transform,Load)系统已经不再只是简单的数据搬运工。ETL是数据仓库和数据分析流程中的核心环节,它负责将分散的数据从
- 进阶向:Django入门,从零开始构建一个Web应用
nightunderblackcat
Python进阶djangopython后端
一、Django是什么?想象你建房子需要砖头、水泥、设计图...Django就是Python的Web框架工具箱,它帮你准备好了:数据库管理用户登录系统网页模板引擎安全防护(防黑客攻击)你只需专注"盖房子"(业务逻辑),不用从烧砖开始!二、环境准备(5分钟搞定)安装Python官网下载Python3.8+:python.org安装时勾选AddPythontoPATH安装Django打开命令行(Win
- MapReduce分布式计算框架:从原理到实战
AI妈妈手把手
mapreduce前端大数据分布式计算python人工智能
大家好!今天我们来聊聊大数据处理领域的一个重要框架——MapReduce。作为Google提出的经典分布式计算模型,MapReduce极大地简化了海量数据的处理流程。无论你是大数据新手还是有一定经验的开发者,这篇文章都会让你对MapReduce有更深入的理解。我们还会通过实际代码示例来展示它的强大功能!一、MapReduce是什么?想象你有一个装满10亿本书的图书馆,现在需要统计所有书中"大数据"
- 大数据面试题之Hive(1)
小的~~
大数据大数据hivehadoop
说下为什么要使用Hive?Hive的优缺点?Hive的作用是什么?说下Hive是什么?跟数据仓库区别?Hive架构Hive内部表和外部表的区别?为什么内部表的删除,就会将数据全部删除,而外部表只删除表结构?为什么用外部表更好?Hive建表语句?创建表时使用什么分隔符?Hive删除语句外部表删除的是什么?Hive数据倾斜以及解决方案Hive如果不用参数调优,在map和reduce端应该做什么Hive
- 学习记录:DAY35
2301_79760424
每日学习记录学习
前言自从得了精神病,整个人精神多了!日程今天也早起了,美中不足的是昨天没怎么睡。本来很气很暴躁的,学了一会释怀了,反正这种状态也不是不能学,多来几天就习惯了。--------7.2--------偷懒了,这两天几乎就没干什么事情学习内容省流:redis入门HttpClient微信小程序缓存机制1.redis入门基于内存储存的数据库redis.net.cn0)安装window版本:Releases·
- 易语言 数据分析小实例:数人头。用到:易数据库
好开心啊没烦恼
易语言数据分析数据库数据挖掘开发语言
目录(不如Python方便,已弃用易语言,但以“易语言”为工具的朋友可作参考。已测试通过。)------0需求1直接操作Excel表2易语言实现2.1导库2.2处理小插曲3欢迎纠错4论文写作/Python学习智能体------以下关于Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内
- 数据库领域数据仓库的星型模型与雪花模型对比
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库数据仓库ai
数据库领域数据仓库的星型模型与雪花模型对比关键词:数据仓库、星型模型、雪花模型、数据建模、对比分析摘要:本文深入探讨了数据库领域数据仓库中的星型模型与雪花模型。首先介绍了数据仓库建模的背景知识,包括目的、预期读者和文档结构等。接着详细阐述了星型模型和雪花模型的核心概念、联系以及各自的架构特点,并通过Mermaid流程图进行直观展示。然后对两种模型的核心算法原理展开分析,结合Python源代码进行说
- DBG+TDE双剑合璧:打造从字段到存储的数据库全栈加密防御体系
安 当 加 密
数据库网络
一、当数据泄露进入“立体攻击”时代:单一防护已失效某企业遭遇连环攻击:1️⃣攻击面1:黑客利用API漏洞越权访问数据库→窃取明文用户信息2️⃣攻击面2:窃取数据库备份文件→离线破解表数据传统方案短板:仅字段加密:无法防御存储层窃取(如.ibd文件被拷贝)仅TDE加密:无法阻止越权SQL直接读取明文✅安当破局之道:DBG(应用层网关)+TDE(存储层加密)=全链路数据“装甲”二、深度图解DBG+TD
- 结合LangGraph、DeepSeek-R1和Qdrant 的混合 RAG 技术实践
大模型之路
RAGrag
一、引言:混合RAG技术的发展与挑战在人工智能领域,检索增强生成(RAG)技术正成为构建智能问答系统的核心方案。传统RAG通过向量数据库存储文档嵌入并检索相关内容,结合大语言模型(LLM)生成回答,有效缓解了LLM的“幻觉”问题。然而,单一的稠密向量检索(如基于Transformer的嵌入模型)在处理关键词匹配和多义词歧义时存在局限性,而稀疏向量检索(如BM25)虽擅长精确关键词匹配,却缺乏语义理
- 【SQL知识】SQL注入中-- +和#的区别
KPX
SQL知识web安全漏洞挖掘sql数据库
目录1.基本概念对比2.实际SQL注入示例(1)原始SQL语句(2)使用--+注释(3)使用#注释3.关键区别图示4.如何选择?5.总结1.基本概念对比特性--+(或--)#(或%23)注释类型SQL标准注释MySQL特有注释是否需要空格需要(+代替空格)不需要URL编码--%20(空格编码)%23适用数据库MySQL、Oracle、SQLServer、PostgreSQL主要MySQL浏览器处理
- 【SQL知识】PDO 和 MySQLi 的区别
目录简介主要区别预处理语句示例比较PDO示例MySQLi示例选择建议简介PDO(PHPDataObjects)和MySQLi(MySQLImproved)都是PHP中用于数据库操作的扩展,都支持预处理语句,但有一些重要区别:主要区别数据库支持PDO:支持多种数据库(MySQL,PostgreSQL,SQLite,Oracle等)MySQLi:仅支持MySQL数据库API风格PDO:提供一致的面向对
- Redis总结
傲祥Ax
redis数据库Redis重点总结
一、Redis是什么?key-value形式的非关系型数据库,基于内存(64位系统默认是物理内存的四分之三),单线程多路io复用,通常当缓存使用,提高查询效率。二、为什么使用Redis?2.1快(内单异高算)内存存储,单线程模型,异步操作,高效的网络通信,优化的算法和数据结构2.2作用2.2.1五大数据类型Redis存储,key-value形式,value的五种数据类型String,List,Se
- 2025年智能计算与人机交互国际会议(ICHCI 2025)
2025InternationalConferenceonIntelligentComputingandHumanComputerInteraction【一】、大会信息会议简称:ICHCI2025大会地点:中国·温州收录检索:提交EiCompendex,CPCI,CNKI,GoogleScholar等【二】、会议简介2025年智能计算与人机交互国际会议将在中国温州隆重召开。旨在为全球从事大数据、人
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号