- 持续稳居前列:高排名公众号运营心法
xinxinseo_
大数据微信搜索引擎微信公众平台百度
在微信公众号竞争激烈的环境下,短暂的高排名或许能凭借运气和短期策略实现,但想要持续稳居前列,绝非易事。这需要深入理解平台规则,以长远眼光和系统性思维进行运营,以下是助力公众号保持高排名的核心心法。内容为王:打造持续优质的内容生态优质内容是公众号立足的根本,更是维持高排名的核心。一方面,要保持内容的稳定性和连贯性,围绕公众号定位,建立完善的内容体系。例如,一个科技类公众号,可将内容划分为行业趋势解读
- 长期抖动(Long-Term Jitter)是啥?
MCU的奇妙之旅
单片机嵌入式硬件mcu硬件工程stm32驱动开发dsp开发
长期抖动(Long-TermJitter)是衡量时钟信号在大量周期后累积的时间偏差的指标。它反映的是时钟边沿位置随时间逐渐“漂移”的程度,类似每天快几秒的钟表,短期内看不出问题,但长期累积会导致显著误差。通俗理解想象两个赛跑者:理想时钟:每一步绝对精准(如每步1秒)。实际时钟:每步可能有微小快慢(如快0.001秒或慢0.001秒)。长期抖动就是跑了1000步后,实际赛跑者比理想位置超前或滞后的总时
- 2025B卷 - 华为OD机试七日集训第5期 - 按算法分类,由易到难,循序渐进,玩转OD
哪 吒
搬砖工逆袭Java架构师华为od算法华为OD机试2025B卷java
目录推荐刷题方法:一、适合人群二、本期训练时间三、如何参加四、七日集训第5期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、逻辑分析第3天、逻辑分析第4天、字符串处理第5天、正则表达式第6天、深度优先搜索dfs第7天、深度优先搜索dfs六、集训总结国内直接使用ChatGPT4o、o3、o4-mini-high、GPT-4.5、GPT4.1、Gemini2.5pro0605
- 2025B卷 - 华为OD机试七日集训第4期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
哪 吒
搬砖工逆袭Java架构师华为od算法python华为OD机试2025B卷
目录推荐刷题方法:一、适合人群二、本期训练时间三、如何参加四、七日集训第4期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、逻辑分析第3天、逻辑分析第4天、贪心算法第5天、二分查找第6天、字符串处理第7天、字符串处理六、集训总结国内直接使用ChatGPT4o、o3、o4-mini-high、GPT-4.5、GPT4.1、Gemini2.5pro0605、ClaudeSon
- 2025B卷 - 华为OD机试七日集训第2期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
目录推荐刷题方法:一、适合人群二、本期训练时间三、如何参加四、七日集训第2期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、数组第3天、双指针第4天、贪心算法第5天、字符串处理第6天、深度优先搜索DFS第7天、动态规划六、集训总结国内直接使用ChatGPT4o、o3、o4-mini-high、GPT-4.5、GPT4.1、Gemini2.5pro0605、ClaudeSo
- 牛市来临之际,如何用期权抢占反弹先机?
期权汇小韩
金融
牛市来临之际,如何实现用更低的资金成本抢占反弹先机?期权就是一种花小钱办大事的强大工具!尐程序:期权汇1、策略详解若投资者认为短期行情有可能会爆发,相较于追涨个股,买入相关的认购期权是一种更为高效的看涨方式。以银行股为例,考虑到大盘代表指数上证50ETF中银行股权重占比超35%,买入上证50ETF期权能有效捕捉银行板块及指数权重股走强的红利,该策略只需投入小额权利金成本,即可博弈指数权重走强带来的
- 集训DAY7之线性dp与前缀优化/stl优化
心之所向凉月空
c++开发语言数据结构算法
集训DAY7之线性DP与前缀优化/STL优化目录DP的概念与思想核心DP的题目类型线性DP详解DP的优化策略后记DP的概念与思想核心DP的定义DP也就是动态规划(DynamicProgramming)是求解决策过程最优化的过程动态规划主要用于求解以时间划分阶段的动态过程的优化问题DP的基本思想动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中我们常常需要在多个可行解中寻找最优解,其基本思
- 深入DP!!!!!!!!!!!!!!-----------------------“DP就像人生:你的当前状态由过去的选择决定,而你的选择将影响未来状态。定义好你的状态转移方程,找到最优的人生路径!“
zwenqiyu
算法
"动态规划不是魔法,而是将大问题拆解成小问题的艺术"——一位ACMer的深夜顿悟暑假集训我们过关斩将,来到了线性动态规划和前缀优化这里,不好,是让人心惊胆战的DP!!!不同于其他题解,我们在详说DP之前,我们先说说记忆化搜索。什么是记忆化搜索?记忆化搜索(Memoization)是一种优化递归算法的技术,通过存储已计算的子问题结果,避免重复计算。它是自顶向下的动态规划实现方式。模板题斐波那契数列问
- Python实现基于POA-CNN-LSTM-Attention鹈鹕优化算法(POA)优化卷积长短期记忆神经网络融合注意力机制进行多变量回归预测的详细项目实例
nantangyuxi
Python算法神经网络python人工智能深度学习目标检测机器学习
目录Python实她基她POA-CNN-LSTM-Attentikon鹈鹕优化算法(POA)优化卷积长短期记忆神经网络融合注意力机制进行她变量回归预测她详细项目实例...1项目背景介绍...1项目目标她意义...1提升她变量回归预测精度...2优化模型训练效率...2python复制ikmpoxtos#操作系统接口,用她环境管理和文件操作ikmpoxtqaxnikngs#警告管理模块,控制运行时警
- 【PyTorch】PyTorch中torch.nn模块的循环层
PyTorch深度学习总结第九章PyTorch中torch.nn模块的循环层文章目录PyTorch深度学习总结前言一、循环层1.简单循环层(RNN)2.长短期记忆网络(LSTM)3.门控循环单元(GRU)4.双向循环层二、循环层参数1.输入维度相关参数2.隐藏层相关参数3.其他参数三、函数总结前言上文介绍了PyTorch中介绍了池化和torch.nn模块中的池化层函数,本文将进一步介绍torch.
- Python程序员如何制定学习计划?提高编写代码的能力
在工作和生活压力之下,如何提升自己的技能和能力?这是许多人都面临的问题。如果你也有这样的问题,那么首先要明确的是,要想提升自己的能力,必须要有一个清晰的计划和方向。这个计划可以是长期的,也可以是短期的,但必须要有一个大的方向性。接下来,我们来看看如何制定一个有效的计划。如果你不知道如何制定计划,其实很简单。你可以闭上眼睛,想一想自己哪些方面比较薄弱,比如多线程锁、Spring的一些核心技术源码、分
- Pushgateway扩展Prometheus监控
ivwdcwso
运维与云原生prometheusk8s云原生
Pushgateway是Prometheus生态系统中的一个重要组件,它允许我们将短期作业或批处理任务的指标推送到Prometheus中。本文将详细介绍如何安装、配置和使用Pushgateway来扩展Prometheus监控。1.Pushgateway简介Pushgateway主要用于解决以下场景:短期作业无法被Prometheus直接抓取批处理任务需要推送指标防火墙后的应用需要主动推送指标它作为
- Teacher Forcing--------一种用于序列生成任务的训练技巧
AI扶我青云志
自然语言处理人工智能
好的,我们来详细介绍一下TeacherForcing,这是一种在训练序列生成模型(如循环神经网络RNN、长短期记忆网络LSTM、门控循环单元GRU、以及后来的Transformer)时常用的重要技术。核心概念目标:训练一个模型,使其能够根据给定的输入序列(如前一个词、图像编码、时间步数据等)预测下一个输出元素(如下一个词、下一个音符、下一个时间点的值等)。这在机器翻译、文本摘要、对话生成、语音合成
- 每日一思(2022.5.18)——基金(十二)
伍德禅师
心灵鸡汤生活
每年收益高的基金,后面收益并不一定会持续,因为风格也会切换。中证消费,投资沪深300和中证500中的消费股,食品饮料为主。消费50、消费龙头,投资中证消费、可选消费龙头公司。消费红利,投资消费行业中股息率较高的股票,目前食品比例高,酒比例低一些。短期涨跌无法预测,用3年以上不用的闲钱,控制好每个行业比例20%以内,在低估定投就好了。双创50是投资创业板+科创板的股票,整体优秀行业(医药、信息技术、
- 关税战!股民何去何从?
delasoka
关税投资
一、短期策略:避险与防御规避出口依赖型行业避免投资机械、家电、汽车零部件等对美出口依赖较高的行业,这些行业可能因关税加码而承压。关注内需消费(如食品饮料、医药)和高股息资产(如长江电力、中国神华),这些板块具有较强的防御性。配置避险资产黄金:2025年黄金价格因避险情绪升温而飙升,建议将黄金或黄金ETF配置在投资组合的10%-15%。国债:美国国债收益率波动较大,但中国国债作为无风险资产,可对冲股
- 2010暑期集训第一专题(数据结构)总结
dooder_daodao
求~道数据结构2010任务
一晃五六天就这么过去了~这一专题中,我们接触到了数据结构中的栈和队列、二叉树、哈夫曼树和字典树,以及数组中的字符匹配KMP和树的一种应用并查集,内容挺多的,看看这一大串的列举就知道了。总体上感觉:内容太多了,所以没有达到预期的效果,不过,从另一方面说,虽然学习本来就是一个循序渐进的过程,但是如果没有任务要求,这个渐进的速度也不会让人满意的。所以,内容多的另一方面是,这一专题至少让我们了解了很多的东
- 【ICLR 2022】时序精选论文08|Pyraformer: 基于金字塔注意力机制与多尺度辨识卷积的时间序列预测模型(代码解读附源码)
OverOnEarth
时间序列预测项目实战人工智能机器学习深度学习python算法
ICLR2022PYRAFORMER:LOW-COMPLEXITYPYRAMIDALAT-TENTIONFORLONG-RANGETIMESERIESMODELINGANDFORECASTINGPyraformer要解决的问题基于时间序列数据面临的挑战:建立一个灵活但简约的模型,能够捕获不同范围的时间依赖性。时间序列通常表现为短期和长期的重复模式,将他们考虑在内是准确预测的关键。即能够获得一个同时
- 长短期记忆(LSTM)网络模型
凌莫凡
lstm人工智能rnn深度学习神经网络
一、概述 长短期记忆(LongShort-TermMemory,LSTM)网络是一种特殊的循环神经网络(RNN),专门设计用于解决传统RNN在处理长序列数据时面临的梯度消失/爆炸问题,能够有效捕捉长距离依赖关系。其核心在于引入记忆细胞(CellState)和门控机制(GateMechanism),通过控制信息的流动来实现对长期信息的存储与遗忘。二、模型原理 LSTM由记忆细胞和三个门控单元(遗
- 长短期记忆网络(LSTM):让神经网络拥有 “持久记忆力” 的神奇魔法
在神经网络的奇妙世界里,有一种模型仿佛拥有了“魔法”,能够记住很久以前的信息,克服了传统循环神经网络(RNN)在处理长序列数据时的“健忘症”,它就是长短期记忆网络(LongShort-TermMemoryNetwork),简称LSTM。今天,就让我们一起走进LSTM的世界,揭开它神秘的面纱。一、从RNN的“健忘症”说起循环神经网络(RNN)是一种专门为处理序列数据而设计的神经网络,它通过隐藏层的循
- 2025B卷 - 华为OD机试七日集训第5期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
目录推荐刷题方法:一、适合人群二、本期训练时间三、如何参加四、七日集训第5期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、逻辑分析第3天、逻辑分析第4天、字符串处理第5天、深度优先搜索dfs第6天、广度优先搜索bfs第7天、动态规划六、集训总结国内直接使用ChatGPT4o、o3、o4-mini-high、GPT-4.5、GPT4.1、Gemini2.5pro0605、
- 百度轮岗:任命新CFO,崔珊珊退居业务二线
大力财经
百度
文|大力财经2025年7月1日,百度组织再次变革,崔珊珊退居二线引发的行业关注。百度创始人李彦宏发布的内部信,宣布的新一轮组织调整里,崔珊珊退居二线这一变动,格外引人瞩目。崔珊珊,这位在百度人力资源及行政管理岗位上坚守了六年多的资深副总裁,在此次轮岗调整中,不再负责相关事务,转而继续担任文化委员会秘书长。崔珊珊退居二线,从短期来看,可能会引发内部团队的一些小波动,但百度通过合理的过渡安排与人员调配
- LSTM(Long Short-Term Memory)模型的深度解析
AI扶我青云志
lstmrnn深度学习
在6.28号我发了一个博客《RNN(循环神经网络)与LSTM(长短期记忆网络)输出的详细对比分析》,但是我并未详细讲解LSTM,LSTM是循环神经网络中的一个模型,然而通过这篇博客给大家深度解析一下LSTM,重点关注其内部结构和参数。LSTM是为了解决标准RNN在处理长序列时出现的梯度消失/爆炸问题而设计的一种特殊循环神经网络结构。它的核心在于引入了门控机制和细胞状态,使得网络能够有选择地记住或忘
- 创客匠人老蒋揭秘:创始人IP打造的价值判断与避坑指南
创客匠人老蒋
商业思维知识变现创始人IP创客匠人
创业路上的诱惑:暴利项目背后的价值陷阱2018年,老蒋面临一场关键抉择:朋友邀请他投资虚拟币发币项目,声称“回报率能达几十倍”。彼时创客匠人年营收已达“小目标”,但他最终拒绝了这场“财富盛宴”。“发币是社会输、客户输、自己输的三输局面”,这种价值判断源于创客匠人“三赢文化”——当项目仅让企业或个人获利,却损害社会与客户时,即便短期暴利也必须拒绝。老蒋的经历揭示了创始人IP打造的首要原则:价值判断是
- Python Day57
别勉.
python机器学习python开发语言
Task:1.序列数据的处理:a.处理非平稳性:n阶差分b.处理季节性:季节性差分c.自回归性无需处理2.模型的选择a.AR§自回归模型:当前值受到过去p个值的影响b.MA(q)移动平均模型:当前值收到短期冲击的影响,且冲击影响随时间衰减c.ARMA(p,q)自回归滑动平均模型:同时存在自回归和冲击影响时间序列分析:ARIMA/SARIMA模型构建流程时间序列分析的核心目标是理解序列的过去行为,并
- 本周沪铜想法
落雪财神意
人工智能
核心逻辑:低库存与地缘风险缓和支撑价格,但淡季需求疲软与关税悬疑压制反弹空间,短期维持高位震荡一、成本高企与利润分化当前沪铜市场,成本端与产业链利润呈现出复杂态势。铜精矿加工费(TC)持续处于-43.56美元/吨的负值区间,冶炼厂仍处于“加工即亏损”的艰难处境。海外矿端的一系列扰动是主因:秘鲁安塔米纳铜矿因事故全面停工,智利Sentinel铜矿也因安全问题局部停产,使得短期铜精矿供应愈发紧张;市场
- 回归预测 | MATLAB实现LSTM-SVR(长短期记忆神经网络-支持向量机)多输入单输出
matlab科研社
神经网络回归matlab
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍长短期记忆神经网络(LSTM)作为一种循环神经网络(RNN)的变体,擅长处理序列数据并捕捉长期依赖关系,而支持向量机(SVR)则是一种强大的回归算法,能够有效地处理高维数据并防止过拟合。将两者结合的LSTM
- AI人工智能中LSTM在视频行为识别的应用
AI人工智能中LSTM在视频行为识别的应用关键词:LSTM、视频行为识别、深度学习、时序建模、计算机视觉、神经网络、动作识别摘要:本文将深入探讨LSTM(长短期记忆网络)在视频行为识别领域的应用。我们将从基础概念出发,逐步讲解LSTM如何解决视频时序建模的挑战,分析其核心算法原理,并通过实际代码示例展示LSTM在行为识别中的具体实现。文章还将探讨当前的应用场景、工具资源以及未来发展趋势,为读者提供
- 门控循环单元(GRU):LSTM 的轻量级高效 “记忆专家”
LNL13
grulstm机器学习
在探索完长短期记忆网络(LSTM)的神奇“记忆魔法”后,我们迎来了它的“近亲”——门控循环单元(GatedRecurrentUnit,简称GRU)。GRU就像是神经网络领域里的“精简版记忆大师”,它继承了LSTM处理长序列数据的优势,同时以更简洁的结构和更高的训练效率脱颖而出。今天,就让我们一同走进GRU的世界,看看它是如何在保留核心功能的同时实现“轻装上阵”的。一、GRU的诞生:简化与优化的智慧
- 深度学习目标检测之YOLOv3实战(二)训练自己的图像数据
郎郎不会飞
深度学习目标识别python深度学习
深度学习目标检测之YOLOv3实战(二)训练自己的图像数据数据集准备数据集预处理原demo修改数据集训练目标检测补充二零二零年的大年初一,给大家拜个年,祝大家鼠年吉祥,万事如意,趁着喜气,把Yolov3训练自己的数据过程,记录一下,共勉共进。同样,无人机搭载山狗拍摄的视频,目标检测的种类是模型tank和airplane,部分效果图镇贴:数据集准备首先需要将自己的数据集准备好,不同场景下的目标数据尽
- 通达信 智尊多空擒底系统 - 综合趋势交易指标主图
q125500612
通达信指标python前端通达信指标
用法说明:基本信息显示:在K线图右上角显示个股所属行业(HYBLOCK)、地域(DYBLOCK)和概念(GNBLOCK)信息均线系统:包含5/10/20/60/120/250日多条均线用于判断不同周期的趋势方向买卖信号:"↖注意买入":当满足多个条件时提示买入机会"双买"信号:当现价同时上穿买筹和卖筹线时提示"智尊擒底":出现底部信号时提示顶部预警:"见顶":短期顶部信号"大顶":重要顶部信号"危
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号