准备
批处理
为方便控制集群,写了脚本cmd2all.sh
#!/bin/bash
if [ $# -lt 3 ]; then
echo "usage: $0 [type cmds hosts]"
echo "for example: ./cmd2all.sh \"cmds\" \"touch t1.txt\" \"gpu1 gpu2\""
echo "for example: ./cmd2all.sh \"path\" \"/home/gbxu/CUDA/" \"gpu1 gpu2\""
exit -1;
fi
type=$1 # "cmds"
cmds_or_path=$2 # "touch test.txt"
#hosts=$3
hosts=(gpu10 gpu11 gpu12 gpu13 gpu14 gpu15 gpu16 gpu17 gpu18)
if [$type == "cmds"]
then
for host in ${hosts[@]}
do
ssh $host nohup $cmds_or_path &
done
fi
if [$type == "path"]
then
for host in ${hosts[@]}
do
nohup scp -r $cmds_or_path $host:~/ &
done
fi
使用virtualenv
如果是python3的环境,需要virtualenv -p /usr/bin/python3 mxnetGPU
使用virtualenv,创建新的virtualenv,并修改.bashrc,使得在每次进入终端时activate虚拟环境(方便后期分布式运行)
hosts="gpu10 gpu11 gpu12 gpu13 gpu14 gpu15 gpu16 gpu17 gpu18 "
./cmd2all.sh "cmds" "sudo yum -y install epel-release && sudo yum -y install python-pip && sudo pip install virtualenv && virtualenv mxnetGPU" $hosts
./cmd2all.sh "cmds" "echo \"## gbxu MXnet-GPU\" >> .bashrc" $hosts
./cmd2all.sh "cmds" "echo \"source mxnetGPU/bin/activate\" >> .bashrc" $hosts
尝试在gpu10安装
Install NVIDIA Driver
本身已有驱动则该操作不必要。
lspci | grep -i nvidia #查看设备
modinfo nvidia #查看驱动
sudo yum -y remove nvidia-*
sudo sh NVIDIA-Linux-x86_64-390.25.run #安装驱动
Install CUDA:
see documents:
- offline安装,online版本可能出现依赖缺失。
- 所有版本
CUDA是NVIDIA推出的用于自家GPU的并行计算框架,只有当要解决的计算问题是可以大量并行计算的时候才能发挥CUDA的作用。
下载: 见offline安装
#copy installer && run
# 若安装错误需要先卸载
sudo yum -y remove "cuda-*"
sudo rm -rf /usr/local/cuda*
sudo rpm -i cuda-repo-rhel7-9-2-local-9.2.148-1.x86_64.rpm
sudo yum clean all
sudo yum -y install cuda
gpu10利用yum local的安装出现问题,后来下载cuda_9.2.148_396.37_linux.run
sudo sh cuda_9.2.148_396.37_linux.run
安装
并且在安装(or not, just try)时同意nvidia驱动,并且一路yes和default。
or, add /usr/local/cuda-9.2/lib64 to /etc/ld.so.conf and run ldconfig as root
添加CUDA环境变量
# export LD_LIBRARY_PATH=/usr/local/cuda/lib64/:$LD_LIBRARY_PATH
echo -e "export LD_LIBRARY_PATH=/usr/local/cuda/lib64/:\$LD_LIBRARY_PATH" >> .bashrc
# export PATH=$PATH:/usr/local/cuda/bin
echo -e "export PATH=\$PATH:/usr/local/cuda/bin" >> .bashrc
测试CUDA
nvcc -V
nvidia-smi
cd /home/gbxu/NVIDIA_CUDA-9.2_Samples/1_Utilities/deviceQuery
make
./deviceQuery # 结果pass则安装成功
Install cuDNN:
see documents
cuDNN(CUDA Deep Neural Network library):是NVIDIA打造的针对深度神经网络的加速库,是一个用于深层神经网络的GPU加速库。如果你要用GPU训练模型,cuDNN不是必须的,但是一般会采用这个加速库。
tar -xzvf cudnn-9.2-linux-x64-v7.1.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h
安装Prerequisites
see documents
sudo yum -y install build-essential git lapack-devel openblas-devel opencv-devel atlas-devel
complie MXNet
see:documents
git clone --recursive https://github.com/apache/incubator-mxnet.git
cd incubator-mxnet
make clean_all
make -j $(nproc) USE_OPENCV=1 USE_BLAS=openblas USE_CUDA=1 USE_CUDA_PATH=/usr/local/cuda USE_CUDNN=1 USE_DIST_KVSTORE=1 USE_PROFILER=1
install MXNet in python
cd python
pip uninstall -y mxnet
pip install -e .
test MXNet in python
python
>>> import mxnet as mx
>>> a = mx.nd.zeros((2,3), mx.gpu())
install python lib
请根据最后运行MXNet任务时查缺补漏
pip install numpy requests
预设编译参数
cd到源代码主目录,在makefile文件中预设编译参数,
# vim incubator-mxnet/Makefile
cmpl:
make -j $(nproc) USE_OPENCV=1 USE_BLAS=openblas USE_DIST_KVSTORE=1
cmplgpu:
make -j $(nproc) USE_OPENCV=1 USE_BLAS=openblas USE_DIST_KVSTORE=1 USE_CUDA=1 USE_CUDA_PATH=/usr/local/cuda USE_CUDNN=1
之后使用make指令编译更为便捷。
make cmplgpu
批量安装环境
在gpu11-gpu18批量安装环境
先用1.sh
将数据传到nodes,
1.sh
hosts=(gpu11 gpu12 gpu13 gpu14 gpu15 gpu16 gpu17 gpu18)
for host in ${hosts[@]}
do
echo run 1.sh at $host
scp -r process_data gbxu@$host:~/
done
再用2.sh
在各nodes运行scripts_in_nodes.sh
脚本即可。
2.sh
hosts=(gpu12 gpu13 gpu14 gpu15 gpu16 gpu17 gpu18)
for host in ${hosts[@]}
do
echo run 2.sh at $host
scp process_data/scripts_in_nodes.sh gbxu@$host:~/process_data/
ssh gbxu@$host "cd process_data && nohup ./scripts_in_nodes.sh &"
done
scripts_in_nodes.sh
sudo yum -y remove "cuda-*"
sudo rpm -i cuda-repo-rhel7-9-2-local-9.2.148-1.x86_64.rpm
sudo yum clean all
sudo yum -y install cuda
echo -e "export LD_LIBRARY_PATH=/usr/local/cuda/lib64/:\$LD_LIBRARY_PATH" >> ~/.bashrc
echo -e "export PATH=\$PATH:/usr/local/cuda/bin" >> ~/.bashrc
tar -xzvf cudnn-9.2-linux-x64-v7.1.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo yum -y install build-essential git lapack-devel openblas-devel opencv-devel atlas-devel
pip install numpy requests # 请根据最后运行MXNet任务时查缺补漏
编译、安装MXNet
之后只需在一台host上编译mxnet即可,余下用MXNet的同步机制即可。
在gpu10上启动训练
- 需要加库文件放到同步的文件夹下:
cd incubator-mxnet/example/image-classification
echo -e "gpu11\ngpu12\ngpu13\ngpu14\ngpu15\ngpu16\ngpu17\ngpu18\n" > hosts
rm -rf mxnet
cp -r ../../python/mxnet .
cp -r ../../lib/libmxnet.so mxnet
- 然后执行命令,该命令会同步文件夹cluster上启动8个worker,1个server
# export DMLC_INTERFACE='ib0'; # ib尚未配置好
python ../../tools/launch.py -n 8 -s 1 --launcher ssh -H hosts --sync-dst-dir /home/gbxu/image-classification_test/ python train_mnist.py --network lenet --kv-store dist_sync --num-epochs 1 --gpus 0
ENJOY
- multiple machines each containing multiple GPUs 的训练见docs
- 其中
dist_sync_device
替代dist_sync
。因为cluster为多GPU,见docs - mxnet-make-install-test.sh
cd incubator-mxnet
make clean_all
make -j $(nproc) USE_OPENCV=1 USE_BLAS=openblas USE_CUDA=1 USE_CUDA_PATH=/usr/local/cuda USE_CUDNN=1 USE_DIST_KVSTORE=1 USE_PROFILER=1
cd python
pip uninstall -y mxnet
pip install -e .
cd ../example/image-classification
echo -e "gpu11\ngpu12\ngpu13\ngpu14\ngpu15\ngpu16\ngpu17\n" > hosts
rm -rf mxnet # example/image-classification下的
cp -r ../../python/mxnet .
cp -r ../../lib/libmxnet.so mxnet
export DMLC_INTERFACE='ib0';
python ../../tools/launch.py -n 8 -s 1 --launcher ssh -H hosts --sync-dst-dir /home/gbxu/image-classification_test/ python train_mnist.py --network lenet --kv-store dist_sync --num-epochs 1 --gpus 0