Pytohn data mode plt

这里写目录标题

  • 文件的读写
    • 创建.csv类型的文件,并读取文件
  • 使用Python做图
  • 生成数据集
  • 知识点
    • torch.arange(x)
    • shape
    • numel()
    • reshape(x,y,z)
    • torch.zeros(3,3,4)
    • torch.ones(2,3,4)
    • torch.randn(4,5)
    • torch.tensor([[1,2,3],[4,5,6],[7,8,9]])
    • 数组的加减乘除
    • torch.exp(x)
    • Z1=torch.cat((X,Y),dim=0)
    • Z=X==Y
    • X.sum()
    • 矩阵的广播机制,形状不一样的矩阵变成形状相同的矩阵
    • 矩阵中元素的获取
    • before =id(Y)
    • torch.zeros_like(Y)
    • Z[:]=X+Y
    • print(type(A),type(B))
    • print(a,a.item(),int(a),float(a))

文件的读写

创建.csv类型的文件,并读取文件

.csv类型的文件是以逗号风格的字符串类型的数据

import os//导入操作计算机系统的对象
os.makedirs(os.path.join('..','data'),exist_ok=True)//在当前项目所在的目录下创建文件data,如果文件存在也不报异常
data_file=os.path.join('..','data','house_tiny.cvs')//在data目录下创建.csv文件
with open(data_file,'w') as f://打开文件的写权限并写入数据
    f.write('NumRooms,Alley,Price\n')
    f.write('NA,Pave,127500\n')
    f.write('2,NA,106000\n')
    f.write('4,NA,178100\n')
    f.write('NA,NA,140000\n')

import pandas//pandas主要用于数据的读取操作

data=pandas.read_csv(data_file)//读取.csv类型的数据
print(data)
   NumRooms Alley   Price
0       NaN  Pave  127500
1       2.0   NaN  106000
2       4.0   NaN  178100
3       NaN   NaN  140000
import os
os.makedirs(os.path.join('D:/File/test','data'),exist_ok=True)
data_file=os.path.join('D:/File/test','data','house_tiny.csv')
with open(data_file,'w') as f:
    f.write('NumRooms,Alley,Price\n')
    f.write('2.0,Pave,127500\n')
    f.write('4.0,NA,178100\n')
    f.write('NA,NA,140000\n')
    f.write('NA,Pave,127500\n')
import pandas
data =pandas.read_csv(data_file)
print(data)
import torch
import os
os.makedirs(os.path.join("D:/File/test","data"),exist_ok=True)
data_file=os.path.join("D:/File/test","data","house_tiny.csv")
with open(data_file,"w") as f:
    f.write('NumRooms,Alley,Price\n')
    f.write('2.0,Pave,127500\n')
    f.write('4.0,NA,178100\n')
    f.write('NA,NA,140000\n')
    f.write('NA,Pave,127500\n')

import pandas
data =pandas.read_csv(data_file)
print(data)

inputs ,outputs =data.iloc[:,0:2],data.iloc[:,2]
inputs=inputs.fillna(inputs.select_dtypes(include="number").mean())
print(inputs)

inputs=pandas.get_dummies(inputs,dummy_na=True,dtype=numpy.int8)
print(inputs)
print(outputs)
X,y=torch.tensor(inputs.values),torch.tensor(outputs.values)
print(X)
print(y)
   NumRooms Alley   Price
0       2.0  Pave  127500
1       4.0   NaN  178100
2       NaN   NaN  140000
3       NaN  Pave  127500
   NumRooms Alley
0       2.0  Pave
1       4.0   NaN
2       3.0   NaN
3       3.0  Pave
   NumRooms  Alley_Pave  Alley_nan
0       2.0           1          0
1       4.0           0          1
2       3.0           0          1
3       3.0           1          0
0    127500
1    178100
2    140000
3    127500
Name: Price, dtype: int64
tensor([[2., 1., 0.],
        [4., 0., 1.],
        [3., 0., 1.],
        [3., 1., 0.]], dtype=torch.float64)
tensor([127500, 178100, 140000, 127500])

使用Python做图

生成数据集

知识点

torch.arange(x)

作用:依据x生成一个数组

import torch
x=torch.arange(12)
print(x)
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
import numpy
x=numpy.arange(12)
print(x)
[ 0  1  2  3  4  5  6  7  8  9 10 11]

shape

作用:查看调用者的形状或者称呼为尺寸

import torch
x=torch.arange(12)
a=x.shape
print(a)
torch.Size([12])
import numpy
x=numpy.arange(12)
a=x.shape
print(a)
(12,)

numel()

作用:(名称的字面意思元素的数量)查看元素的数量

import torch
x=torch.arange(12)
a=x.numel()
print(a)
12

reshape(x,y,z)

作用:将数据的展示形状进行重新的塑形

import torch
x=torch.arange(12)
X=x.reshape(3,4)
print(X)
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
import numpy
x=numpy.arange(12)
X=x.reshape(3,4)
print(X)
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]

-1的作用:依据数据自动计算数值并填入

import torch
x=torch.arange(12)
X=x.reshape(-1,4)
print(X)
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
import torch
x=torch.arange(12)
X=x.reshape(3,-1)
print(X)
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
import numpy
x=numpy.arange(12)
X=x.reshape(-1,4)
print(X)
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
import numpy
x=numpy.arange(12)
X=x.reshape(3,-1)
print(X)
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]

torch.zeros(3,3,4)

作用:生成三维全为零的数据

import torch
X=torch.zeros(3,3,4)
print(X)
tensor([[[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]],

        [[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]],

        [[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]]])
import numpy as np
X=np.zeros((2,2,3),int)
print(X)
[[[0 0 0]
  [0 0 0]]

 [[0 0 0]
  [0 0 0]]]

torch.ones(2,3,4)

作用:生成三维全为1的数据

import torch as to
X=to.ones(2,2,3)
print(X)
tensor([[[1., 1., 1.],
         [1., 1., 1.]],

        [[1., 1., 1.],
         [1., 1., 1.]]])

在python中想要改变函数的返回结果,往往只需要在参数列表中在添加一些参数

import numpy as  np
X=np.ones((2,2,2),float)
print(X)
[[[1. 1.]
  [1. 1.]]

 [[1. 1.]
  [1. 1.]]]

torch.randn(4,5)

作用:生成符合正太分布的数据

import torch
X=torch.randn(4,5)
print(X)
tensor([[-1.1866,  1.1176,  1.0693, -1.0216,  0.1562],
        [ 0.1815,  0.3246,  1.1276,  0.5653, -1.4328],
        [ 0.1206,  0.6508, -0.4501,  0.0958,  0.7154],
        [ 1.1551,  0.1163,  0.7360,  0.7723, -0.1527]])
import numpy
X=numpy.random.randn(3,4)
print(X)
[[ 0.77655555 -0.89418554 -1.27220862 -0.52597834]
 [-0.20755957 -0.53087554 -0.83361693  1.29417959]
 [ 0.49374487  1.55469626  0.53871618 -0.01278069]]

torch.tensor([[1,2,3],[4,5,6],[7,8,9]])

自定义数据

import torch
X=torch.tensor([[1,2,3],[4,5,6],[7,8,9]])
print(X)
tensor([[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]])

数组的加减乘除

import torch
x=torch.tensor([1,2,4,8])
y=torch.tensor([2,2,2,2])
print(str(x+y)+"\n"+str(x-y)+"\n"+str(x*y)+"\n"+str(x/y)+"\n"+str(x**y)+"\n")
tensor([ 3,  4,  6, 10])
tensor([-1,  0,  2,  6])
tensor([ 2,  4,  8, 16])
tensor([0.5000, 1.0000, 2.0000, 4.0000])
tensor([ 1,  4, 16, 64])

torch.exp(x)

作用生成数学公式中e函数

import torch
x=torch.tensor([1,2,3,4])
x=torch.exp(x)
print(x)
tensor([ 2.7183,  7.3891, 20.0855, 54.5981])
import numpy
x=numpy.array([1,2,3,4],float)
print(x)
x=numpy.exp(x)
print(x)
[1. 2. 3. 4.]
[ 2.71828183  7.3890561  20.08553692 54.59815003]

Z1=torch.cat((X,Y),dim=0)

作用:合并数据存储类型,dim=0按照列合并,dim=1按照行合并

import torch
X=torch.arange(12,dtype=torch.int).reshape(3,4)
print(X)
Y=torch.tensor([[1,2,3,4],[2,2,2,2],[6,6,6,6]])
Z1=torch.cat((X,Y),dim=0)
Z2=torch.cat((X, Y),dim=1)
print(Y)
print(Z1)
print(Z2)
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]], dtype=torch.int32)
tensor([[1, 2, 3, 4],
        [2, 2, 2, 2],
        [6, 6, 6, 6]])
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11],
        [ 1,  2,  3,  4],
        [ 2,  2,  2,  2],
        [ 6,  6,  6,  6]])
tensor([[ 0,  1,  2,  3,  1,  2,  3,  4],
        [ 4,  5,  6,  7,  2,  2,  2,  2],
        [ 8,  9, 10, 11,  6,  6,  6,  6]])

Z=X==Y

作用:比较两个矩阵是否相等,比较的是两个数据存储结构中的每一位元素是否相等

import torch
X=torch.arange(12).reshape(3,4)
print(X)
Y=torch.tensor([[1,2,3,4],[2,2,2,2],[6,6,6,6]])
print(Y)
Z=X==Y
print(Z)

X.sum()

作用 :将矩阵中所有的元素相加

import torch
X=torch.arange(12).reshape(3,4)
print(X.sum())

矩阵的广播机制,形状不一样的矩阵变成形状相同的矩阵

作用:广播机制可以使形状不一样的矩阵变成一样的矩阵

"import torch
a=torch.arange(3).reshape(3,1)
print(a)
b=torch.arange(2).reshape(1,2)
print(b)
C=a+b
print(C)
tensor([[0],
        [1],
        [2]])
tensor([[0, 1]])
tensor([[0, 1],
        [1, 2],
        [2, 3]])

矩阵中元素的获取

作用:获取矩阵中特定位置的元素

import torch
X=torch.arange(12).reshape(3,4)
print(X)
print(X[-1])
print(X[1,2])
X[1,2]=111
print(X)
print(X[0:2])
X[0:2]=111111
print(X)
X[0:2,:]=222222
print(X)
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
tensor([ 8,  9, 10, 11])
tensor(6)
tensor([[  0,   1,   2,   3],
        [  4,   5, 111,   7],
        [  8,   9,  10,  11]])
tensor([[  0,   1,   2,   3],
        [  4,   5, 111,   7]])
tensor([[111111, 111111, 111111, 111111],
        [111111, 111111, 111111, 111111],
        [     8,      9,     10,     11]])
tensor([[222222, 222222, 222222, 222222],
        [222222, 222222, 222222, 222222],
        [     8,      9,     10,     11]])

before =id(Y)

作用:查看对象在内存中的存储位置

import torch
Y=torch.ones(3,4)
X=torch.ones(3,4)
before =id(Y)
print(before)
Y=X+Y
after=id(Y)
print(after)
2392263829440
2391076947984

torch.zeros_like(Y)

作用:形成一个像Y一样的全为零的张量

import torch
Y = torch.zeros(3,4)
X = torch.ones(3,4)
Z = torch.zeros_like(Y)
print(id(Z))
Z[:]=X+Y
print(id(Z))
2255358553200
2255358553200

Z[:]=X+Y

作用:可以使Z在内存中的存储位置不变(使用+=这种类型的符合也不会改变对象在内存中的存储位置)

import torch
Y = torch.zeros(3,4)
X = torch.ones(3,4)
Z = torch.zeros_like(Y)
print(id(Z))
Z[:]=X+Y
print(id(Z))
2255358553200
2255358553200
import torch
X=torch.zeros(3,2)
Y=torch.ones(3,2)
before=id(X)
X+=Y
print(before==id(X))
True
import torch
X=torch.zeros(2,4,1)
Y=torch.ones(2,4,4)
Y[:]=X+Y
print(Y)
tensor([[[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]],

        [[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]]])

print(type(A),type(B))

作用:查看数据的数据类型

import torch
X=torch.ones(3,4)
A=X.numpy()
B=torch.tensor(A)
print(type(A),type(B))
print(A)
<class 'numpy.ndarray'> <class 'torch.Tensor'>
[[1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]]

print(a,a.item(),int(a),float(a))

作用:数据类型的强制转换

import torch
a=torch.tensor([3.3])
print(a,a.item(),int(a),float(a))
tensor([3.3000]) 3.299999952316284 3 3.299999952316284

你可能感兴趣的:(人工智能,人工智能)