- 【硬核教程】DeepSeek 70B模型微调实战:打造工业级AI开发专家(附完整代码+案例)
爱吃青菜的大力水手
人工智能自动化半导体
——基于LoRA+GRPO算法,显存直降10倍,手把手教你训练行业大模型为什么这篇内容值得收藏?直击工业软件开发6大痛点:代码规范、性能优化、多约束条件处理等难题一次性解决显存消耗降低90%:4×A100全参数微调显存需求从320GB→32GB,中小企业也能玩转大模型实战案例全覆盖:包含PLC代码生成、产线控制优化等典型场景,代码可直接复现附赠工业数据集模板:JSONL格式对话模板+预处理脚本,快
- 分布式多卡训练(DDP)踩坑
m0_54804970
面试学习路线阿里巴巴分布式
多卡训练最近在跑yolov10版本的RT-DETR,用来进行目标检测。单卡训练语句(正常运行):pythonmain.py多卡训练语句:需要通过torch.distributed.launch来启动,一般是单节点,其中CUDA_VISIBLE_DEVICES设置用的显卡编号,也可以不用,直接在main.py里面指定device也行,–nproc_pre_node每个节点的显卡数量。python-m
- YOLO 中 SPFF 模块的优化与 Focal Modulation 替代研究
向哆哆
YOLOyolov8
文章目录1.YOLO中的SPPF模块分析2.FocalModulation简介3.在YOLO中用FocalModulation替换SPPF4.实验与对比分析4.1代码替换YOLO模型中的SPPF4.2训练对比5.AblationStudy(消融实验)5.1不同模块的对比实验5.2目标尺寸对比分析6.模型部署与推理优化6.1ONNX加速推理6.2适配JetsonNano7.进一步优化方向8.在YOL
- AI视觉觉醒:深度学习如何革新视频标注,释放数据潜力基于深度学习的视频自动标注系统
海棠AI实验室
AI理论探索与学术前沿人工智能深度学习音视频
目录引言:被忽视的视频数据金矿传统视频标注的困境:效率、成本与瓶颈深度学习:视频自动标注的破局之道深度学习视频自动标注系统架构系统架构图核心技术解析目标检测(ObjectDetection)行为识别(ActionRecognition)视频分割(VideoSegmentation)代码实践:基于YOLOv5的目标检测视频标注示例挑战与未来展望结语:AI赋能,释放视频数据的无限可能引言:被忽视的视频
- 探讨Hadoop的基础架构及其核心特点
xx155802862xx
hadoop大数据分布式
Hadoop是一个开源软件框架,用于存储和处理大规模数据集。它是Apache软件基金会下的一个项目,灵感来源于Google的两篇论文:一篇关于Google文件系统(GFS),另一篇关于MapReduce。Hadoop设计用于从单台服务器扩展到数千台机器,每台机器提供局部计算和存储。而不仅仅是处理大数据,Hadoop的真正价值在于其对于数据的高容错性、可扩展性以及相对低成本的存储和处理能力。以下是探
- Python之使用动态导包优化软件加载速度
Sherry Wangs
Python开发实践python开发语言
在开发大型Python软件时,可能会遇到以下问题:由于静态导入了大量模块,导致软件启动时间过长,用户体验不佳。例如,一个复杂的桌面应用程序或Web服务可能依赖于多个大型库(如numpy、pandas、torch或Yolo),这些库在启动时被静态导入,即使某些功能模块在启动时并不需要立即使用。这种情况下,静态导入会显著增加软件的启动时间,故使用动态导入。文章目录1.静态导入(StaticImport
- 基于YOLOv5的无人超市商品检测:食品、饮料、零食与家居用品
深度学习&目标检测实战项目
YOLO目标跟踪深度学习人工智能ui
引言随着人工智能技术的快速发展,尤其是计算机视觉的提升,无人超市的概念逐渐成为现实。在无人超市中,商品的智能化管理和检测是其顺利运行的关键。商品检测不仅要实现高效、准确的物品识别,还要支持多种商品类别的实时检测,以保证购物体验的顺畅与安全。在此背景下,深度学习与目标检测算法,如YOLOv5,成为了实现这一目标的重要工具。YOLOv5作为目前最先进且高效的目标检测算法之一,其应用范围广泛,包括人脸检
- 论文阅读笔记2
sixfrogs
论文阅读笔记论文阅读cnn
OptimizingMemoryEfficiencyforDeepConvolutionalNeuralNetworksonGPUs1论文简介作者研究了CNN各层的访存效率,并揭示了数据结构和访存模式对CNN的性能影响。并提出了优化方法。2方法介绍2.1Benchmarks数据集:MNIST,CIFAR,ImageNetCNN:AlexNet,ZFNet,VGG2.2实验设置CPU:IntelXe
- [论文阅读]DAMO-YOLO——实时目标检测设计报告
一朵小红花HH
知识蒸馏目标检测YOLO目标检测目标跟踪论文阅读人工智能
DAMO-YOLODAMO-YOLO:AReportonReal-TimeObjectDetectionDesign实时目标检测设计报告论文网址:DAMO-YOLO简读论文这篇论文介绍了一个名为DAMO-YOLO的新型目标检测方法,相比YOLO系列的其他方法有着更好的性能。该方法的优势来自于几项新技术:使用了MAE-NAS作为骨干网络,可以自动搜索出不同延迟预算下的优化网络结构。MAE-NAS被称
- 基于YOLOv5的野生动物检测与监控系统:猫、狗、鸟、猴子、狮子、老虎、象的实时识别与分析
深度学习&目标检测实战项目
YOLO目标跟踪人工智能深度学习ui目标检测机器学习
1.引言随着人工智能技术的飞速发展,尤其是深度学习在计算机视觉领域的突破,目标检测技术已广泛应用于各类场景。从城市交通监控到安防系统,再到野生动物保护和生态监测,目标检测技术为我们提供了实时、精确的解决方案。在众多目标检测算法中,YOLO(YouOnlyLookOnce)系列因其高效性和实时性,已成为解决多类别目标检测任务的首选方法。本文将介绍如何使用YOLOv5进行野生动物检测与监控,包括猫、狗
- 【自学笔记】大数据基础知识点总览-持续更新
Long_poem
笔记大数据
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录大数据基础知识点总览1.大数据概述2.大数据处理技术3.数据仓库与数据挖掘4.大数据分析与可视化5.大数据平台与架构6.大数据安全与隐私总结大数据基础知识点总览1.大数据概述定义:大数据是指数据量巨大、类型多样、处理速度快的数据集合。特征:4V(Volume、Velocity、Variety、Veracity)描述了大数据的主
- 计算机视觉实战:YOLOv8在工业质检中的应用(附完整代码+数据集)
emmm形成中
深度学习人工智能python计算机视觉
计算机视觉实战:YOLOv8在工业质检中的应用(附完整代码+数据集)摘要:本文为零基础读者系统讲解目标检测核心原理,基于YOLOv8实现工业缺陷检测实战项目。从数据标注到模型部署,包含环境配置、数据增强、模型训练全流程详解,手把手教你打造高精度智能质检系统!关键词:YOLOv8、目标检测、工业质检、缺陷识别、PyTorch一、为什么选择YOLOv8做工业质检?1.1工业质检的三大痛点人工成本高:传
- 【复杂网络建模】真实网络数据集的读取和操作
钰云空间
复杂网络Pythonpython
文章目录概要1.获取真实网络数据集的常用网址1.1NetworkRepository.1.2StanfordLargeNetworkDatasetCollection1.3KONCET1.4Netzschleuder2.网络分析2.1计算度中心性2.2绘制网络图小结概要在复杂网络建模中,使用真实的网络数据集是理解和分析现实世界网络结构的关键。接下来将介绍如何使用Python中的工具库(如Netwo
- DeepSeek在地铁应急响应与处理中的具体实现方案,包括技术架构、功能实现和代码示例:
人工智能专属驿站
架构计算机视觉
以下是关于DeepSeek在地铁应急响应与处理中的具体实现方案,包括技术架构、功能实现和代码示例:1.事件检测与预警技术实现:视频监控与传感器数据融合:利用地铁站内的视频监控系统和传感器(如烟雾传感器、压力传感器)实时采集数据。通过深度学习算法(如目标检测和行为识别)对视频流进行分析,结合传感器数据,快速识别突发事件。自动警报触发:一旦检测到异常事件(如火灾、拥挤踩踏),系统立即通过预设的警报机制
- WPF-ReactiveUi
晓纪同学
C#技巧总结wpfhadoop大数据
文章目录依赖属性和命令的绑定弱绑定强绑定界面后台的cs文件强捆绑方式定义属性和命令第一种方法第二种方法第三种方法动态数据集合whenAny监听单个监听单个对象的多个属性监听多个对象对各属性whenAnyValue例程一例程二WhenAnyValue属性WhenAnyValue(x=>x.SearchTerm)Throttle(TimeSpan.FromMilliseconds(800))Selec
- 使用深度学习模型U-Net进行训练基于哨兵2的作物分割数据集。PyTorch框架为例,如何构建和训练U-Net模型来完成基于哨兵2的作物分割检测
计算机C9硕士_算法工程师
分割数据深度学习pytorch人工智能
使用深度学习模型如U-Net进行训练基于哨兵2的作物分割。PyTorch框架为例,如何构建和训练U-Net模型来完成基于哨兵2的作物分割检测基于哨兵2的作物分割,共18种作物类型(背景,草地,软冬小麦,玉米,冬季大麦,冬季油菜,春季大麦,向日葵,葡萄藤,甜菜,冬季小黑麦,冬季硬质小麦,水果、蔬菜、花卉,土豆,豆科饲料,大豆,果园,混合谷物,高粱),38到61个不同时间段同一位置10通道多光谱图像,
- Excel中VLOOKUP 函数学习、多种函数混合使用
谁家有个大人
Excel的工作技巧excel学习
一、什么是VLOOKUP函数?VLOOKUP(垂直查找)是Excel中用于在表格中查找特定值并返回对应数据的函数。它常用于在大型数据集中快速查找信息。二、函数语法=VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])-lookup_value:要查找的值。-table_array:查找范围,包括查找列(也就是‘lookup_v
- Matlab 大量接单
matlabgoodboy
matlab开发语言
分享一个matlab接私活、兼职的平台1、技术方向满足任一即可2、技术要求3、最后技术方向满足即可MATLAB:熟练掌握MATLAB编程语言,能够使用MATLAB进行数据处理、机器学习和深度学习等相关工作。机器学习、深度学习、强化学习、仿真、复现、算法、神经网络、建模、图像识别、数据挖掘、数据获取、爬虫、数据分析、目标检测、算法创新、因子分析、相关分析、方差分析、判别分析、方程分析、线性回归、中介
- COCO2017 数据集的下载方法
骆驼穿针眼
mmdet问题集计算机视觉与深度学习数据集下载人工智能python
下载方法(一)COCO数据集下载地址:https://cocodataset.org/#home#imageswgethttp://images.cocodataset.org/zips/train2017.zip#traindatasetwgethttp://images.cocodataset.org/zips/val2017.zip#validationdatasetwgethttp://i
- DINO-X:一种用于开放世界目标检测与理解的统一视觉模型
黄阳老师
目标检测目标跟踪人工智能
DINO-X:一种用于开放世界目标检测与理解的统一视觉模型摘要1引言2方法2.1模型架构2.1.1DINO-XPro2.1.2DINO-XEdge3数据集构建和模型训练数据收集模型训练摘要在本文中,我们介绍了DINO-X,这是一种由IDEAResearch团队开发的统一以对象为中心的视觉模型,迄今为止在开放世界目标检测性能方面表现最佳。DINO-X采用了与GroundingDINO1.5[47]相
- python代码实现支持神经网络对鸢尾花分类
邀_灼灼其华
机器学习及概率统计python神经网络分类sklearn
1、导入支持向量机模型,划分数据集fromsklearnimportdatasetsfromsklearnimportsvmiris=datasets.load_iris()iris_x=iris.datairis_y=iris.targetindices=np.random.permutation(len(iris_x))iris_x_train=iris_x[indices[:-10]]iri
- mysql 视图调用函数_MySQL视图,函数,触发器,存储过程
丛子涵
mysql视图调用函数
1.视图视图是一个虚拟表,它的本质是根据SQL语句获取动态的数据集,并为其命名,用户使用时只需使用【名称】即可获取结果集,可以将该结果集当做表来使用。使用视图我们可以把查询过程中的临时表摘出来,用视图去实现,这样以后再想操作该临时表的数据时就无需重写复杂的sql了,直接去视图中查找即可,但视图有明显地效率问题,并且视图是存放在数据库中的,如果我们程序中使用的sql过分依赖数据库中的视图,即强耦合,
- 高效空间编码技术:SPD-Conv在目标检测中的创新应用
向哆哆
目标检测目标跟踪人工智能yolov8
文章目录SPD-Conv:高效空间编码的技术背景SPD-Conv的原理YOLOv8中的SPD-Conv实现YOLOv8SPD-Conv代码实现代码解析性能提升SPD-Conv的优势与应用场景SPD-Conv的设计细节与优化1.空间深度转换机制的进一步优化2.SPD-Conv的训练技巧与改进3.SPD-Conv与YOLOv8的其他模块结合SPD-Conv的应用扩展1.自动驾驶2.无人机目标检测3.安
- 【大模型】什么是蒸馏版大模型
深度求索者
python人工智能开发语言
大模型蒸馏一、知识蒸馏与无监督样本训练1.知识蒸馏的核心原理目标:将复杂大模型(Teacher)的知识迁移到轻量化小模型(Student)中,提升小模型性能。流程:训练Teacher模型:在完整数据集上训练高性能大模型。冻结Teacher模型:固定其参数,作为监督信号源。训练Student模型:通过模仿Teacher的输出(如logits、特征图等)优化Student模型。2.蒸馏方法分类方法描述
- yolo目标检测项目
m0_75047393
YOLO目标检测人工智能
一、前言(一)、什么是目标检测目标检测是指在图像或视频中准确地识别和定位出现的特定目标物体的任务。目标检测通常包括以下几个步骤:目标分类:确定图像中出现的物体属于哪一类别,例如汽车、行人、狗等。目标定位:确定图像中物体的位置,通常通过绘制边界框或遮罩来标识物体的位置。目标识别:将检测到的目标与预定义的类别进行匹配,以便为目标添加语义标签。多目标检测:在一张图像中检测并识别多个目标,包括重叠目标和不
- 图神经网络实战(9)——GraphSAGE详解与实现
盼小辉丶
图神经网络从入门到项目实战图神经网络GNNpytorch
图神经网络实战(9)——GraphSAGE详解与实现0.前言1.GraphSAGE原理1.1邻居采样1.2聚合2.构建GraphSAGE模型执行节点分类2.1数据集分析2.2构建GraphSAGE模型3.PinSAGE小结系列链接0.前言GraphSAGE是专为处理大规模图而设计的图神经网络(GraphNeuralNetworks,GNN)架构。在科技行业,可扩展性是推动系统增长的关键驱动力。因此
- 轻松连接MySQL与Oracle:Spoon(Kettle)配置指南
黄豪宙
轻松连接MySQL与Oracle:Spoon(Kettle)配置指南项目地址:https://gitcode.com/Resource-Bundle-Collection/3c3aa项目介绍在数据处理和ETL(Extract,Transform,Load)领域,Spoon(Kettle)是一款功能强大的开源工具,广泛应用于数据集成和数据转换任务。然而,对于许多用户来说,配置Spoon(Kettle
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-VOC.yaml
红色的山茶花
YOLO笔记深度学习
VOC.yamlultralytics\cfg\datasets\VOC.yaml目录VOC.yaml1.YAML文件内容2.所需的库和模块3.defconvert_label(path,lb_path,year,image_id):4.Download5.Convert1.YAML文件内容#UltralyticsAGPL-3.0License-https://ultralytics.com/li
- 如何用 DeepSeek 进行卷积神经网络(CNN)的优化
一碗黄焖鸡三碗米饭
人工智能前沿与实践cnn人工智能神经网络机器学习深度学习
如何用DeepSeek进行卷积神经网络(CNN)的优化卷积神经网络(CNN)在计算机视觉任务中取得了巨大的成功,例如图像分类、目标检测和图像生成。然而,尽管CNN在这些任务中表现出色,它们通常需要大量的计算资源,并且在优化过程中可能会遇到一些挑战,如过拟合、训练速度慢、局部最优解等问题。为了更好地优化CNN模型,提高其性能和训练效率,DeepSeek提供了多种优化技术和工具,可以帮助我们系统地进行
- 英特尔开发板试用:结合OAK深度相机进行评测
OAK中国_官方
数码相机
最近英特尔官方发布了一篇文章:主要介绍了如何将英特尔开发板(小挪吒)与OAK深度相机结合使用,并通过OpenVINO™工具套件进行开发和性能评测OAK相机:作为深度数据采集的核心设备,其深度测距功能与OpenVINO™推理相结合,实现了高效的目标检测和深度信息处理。OpenVINO™:作为英特尔的深度学习推理框架,为开发板和OAK相机提供了强大的推理支持。性能优化:通过模型转换和硬件加速,去实现高
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文